These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 37072642)

  • 41. Robust Memristor Networks for Neuromorphic Computation Applications.
    Hajtó D; Rák Á; Cserey G
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31683537
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Memristor based on carbon nanotube gelatin composite film as artificial optoelectronic synapse for image processing.
    Sun Y; Li B; Liu M; Zhang Z
    J Colloid Interface Sci; 2024 Jul; 676():249-260. PubMed ID: 39029251
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ligand-Triggered Self-Assembly of Flexible Carbon Dot Nanoribbons for Optoelectronic Memristor Devices and Neuromorphic Computing.
    Ai L; Pei Y; Song Z; Yong X; Song H; Liu G; Nie M; Waterhouse GIN; Yan X; Lu S
    Adv Sci (Weinh); 2023 Apr; 10(12):e2207688. PubMed ID: 36807578
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conductive-bridging random-access memories for emerging neuromorphic computing.
    Cha JH; Yang SY; Oh J; Choi S; Park S; Jang BC; Ahn W; Choi SY
    Nanoscale; 2020 Jul; 12(27):14339-14368. PubMed ID: 32373884
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improved analog switching characteristics of Ta
    Lee TS; Choi C
    Nanotechnology; 2022 Mar; 33(24):. PubMed ID: 35226891
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Flexible Solution-Processable Black-Phosphorus-Based Optoelectronic Memristive Synapses for Neuromorphic Computing and Artificial Visual Perception Applications.
    Kumar D; Li H; Das UK; Syed AM; El-Atab N
    Adv Mater; 2023 Jul; 35(28):e2300446. PubMed ID: 37192130
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of Initial Synaptic State on Pattern Classification Accuracy of 3D Vertical Resistive Random Access Memory (VRRAM) Synapses.
    Sun W; Choi S; Kim B; Shin H
    J Nanosci Nanotechnol; 2020 Aug; 20(8):4730-4734. PubMed ID: 32126648
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biopolymer based artificial synapses enable linear conductance tuning and low-power for neuromorphic computing.
    Zhang K; Xue Q; Zhou C; Mo W; Chen CC; Li M; Hang T
    Nanoscale; 2022 Sep; 14(35):12898-12908. PubMed ID: 36040454
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computational Study on Interlocked-Ferroelectricity-Contributed High-Performance Memristors Based on Two-Dimensional van der Waals Ferroelectric Semiconductors.
    Chen Z; Li YC; Kong TL; Lv YY; Fa W; Chen S
    ACS Appl Mater Interfaces; 2024 May; 16(20):26428-26438. PubMed ID: 38718304
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Research Progress on the Application of Topological Phase Transition Materials in the Field of Memristor and Neuromorphic Computing.
    Zhang R; Su R; Shen C; Xiao R; Cheng W; Miao X
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960537
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Versatile memristor for memory and neuromorphic computing.
    Guo T; Pan K; Jiao Y; Sun B; Du C; Mills JP; Chen Z; Zhao X; Wei L; Zhou YN; Wu YA
    Nanoscale Horiz; 2022 Feb; 7(3):299-310. PubMed ID: 35064257
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Learning-Rate Modulable and Reliable TiO
    Jang J; Gi S; Yeo I; Choi S; Jang S; Ham S; Lee B; Wang G
    Adv Sci (Weinh); 2022 Aug; 9(22):e2201117. PubMed ID: 35666073
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Learning to Approximate Functions Using Nb-Doped SrTiO
    Tiotto TF; Goossens AS; Borst JP; Banerjee T; Taatgen NA
    Front Neurosci; 2020; 14():627276. PubMed ID: 33679290
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Unsupervised learning in hexagonal boron nitride memristor-based spiking neural networks.
    Afshari S; Xie J; Musisi-Nkambwe M; Radhakrishnan S; Sanchez Esqueda I
    Nanotechnology; 2023 Aug; 34(44):. PubMed ID: 37524068
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Memristor-Based Signal Processing for Compressed Sensing.
    Wang R; Zhang W; Wang S; Zeng T; Ma X; Wang H; Hao Y
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110939
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Natural Organic Materials Based Memristors and Transistors for Artificial Synaptic Devices in Sustainable Neuromorphic Computing Systems.
    Tanim MMH; Templin Z; Zhao F
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837935
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Memristive Devices Based on Two-Dimensional Transition Metal Chalcogenides for Neuromorphic Computing.
    Kwon KC; Baek JH; Hong K; Kim SY; Jang HW
    Nanomicro Lett; 2022 Feb; 14(1):58. PubMed ID: 35122527
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Artificial Neurons Based on Ag/V
    Wang Y; Chen X; Shen D; Zhang M; Chen X; Chen X; Shao W; Gu H; Xu J; Hu E; Wang L; Xu R; Tong Y
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835625
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stimuli-Enabled Artificial Synapses for Neuromorphic Perception: Progress and Perspectives.
    Pan X; Jin T; Gao J; Han C; Shi Y; Chen W
    Small; 2020 Aug; 16(34):e2001504. PubMed ID: 32734644
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A review of memristor: material and structure design, device performance, applications and prospects.
    Xiao Y; Jiang B; Zhang Z; Ke S; Jin Y; Wen X; Ye C
    Sci Technol Adv Mater; 2023; 24(1):2162323. PubMed ID: 36872944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.