These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 37072852)
1. N-terminal region of Drosophila melanogaster Argonaute2 forms amyloid-like aggregates. Narita H; Shima T; Iizuka R; Uemura S BMC Biol; 2023 Apr; 21(1):78. PubMed ID: 37072852 [TBL] [Abstract][Full Text] [Related]
2. The C-terminal dsRNA-binding domain of Kandasamy SK; Zhu L; Fukunaga R RNA; 2017 Jul; 23(7):1139-1153. PubMed ID: 28416567 [No Abstract] [Full Text] [Related]
3. Amyloid fibrils of human prion protein are spun and woven from morphologically disordered aggregates. Almstedt K; Nyström S; Nilsson KP; Hammarström P Prion; 2009; 3(4):224-35. PubMed ID: 19923901 [TBL] [Abstract][Full Text] [Related]
4. Amyloid nucleation and hierarchical assembly of Ure2p fibrils. Role of asparagine/glutamine repeat and nonrepeat regions of the prion domains. Jiang Y; Li H; Zhu L; Zhou JM; Perrett S J Biol Chem; 2004 Jan; 279(5):3361-9. PubMed ID: 14610069 [TBL] [Abstract][Full Text] [Related]
5. Suppression of polyglutamine toxicity by the yeast Sup35 prion domain in Drosophila. Li LB; Xu K; Bonini NM J Biol Chem; 2007 Dec; 282(52):37694-701. PubMed ID: 17956866 [TBL] [Abstract][Full Text] [Related]
6. Formation of soluble oligomers and amyloid fibrils with physical properties of the scrapie isoform of the prion protein from the C-terminal domain of recombinant murine prion protein mPrP-(121-231). Martins SM; Frosoni DJ; Martinez AM; De Felice FG; Ferreira ST J Biol Chem; 2006 Sep; 281(36):26121-8. PubMed ID: 16844683 [TBL] [Abstract][Full Text] [Related]
7. Disulfide bond formation significantly accelerates the assembly of Ure2p fibrils because of the proximity of a potential amyloid stretch. Fei L; Perrett S J Biol Chem; 2009 Apr; 284(17):11134-41. PubMed ID: 19258323 [TBL] [Abstract][Full Text] [Related]
8. Self-Replication of Prion Protein Fragment 89-230 Amyloid Fibrils Accelerated by Prion Protein Fragment 107-143 Aggregates. Sneideris T; Ziaunys M; Chu BK; Chen RP; Smirnovas V Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33049945 [TBL] [Abstract][Full Text] [Related]
9. Deletion of a Ure2 C-terminal prion-inhibiting region promotes the rate of fibril seed formation and alters interaction with Hsp40. Chen L; Chen LJ; Wang HY; Wang YQ; Perrett S Protein Eng Des Sel; 2011 Jan; 24(1-2):69-78. PubMed ID: 21076138 [TBL] [Abstract][Full Text] [Related]
10. The sequences appended to the amyloid core region of the HET-s prion protein determine higher-order aggregate organization in vivo. Balguerie A; Dos Reis S; Coulary-Salin B; Chaignepain S; Sabourin M; Schmitter JM; Saupe SJ J Cell Sci; 2004 May; 117(Pt 12):2599-610. PubMed ID: 15159455 [TBL] [Abstract][Full Text] [Related]
11. The effects of glutamine/asparagine content on aggregation and heterologous prion induction by yeast prion-like domains. Shattuck JE; Waechter AC; Ross ED Prion; 2017 Jul; 11(4):249-264. PubMed ID: 28665753 [TBL] [Abstract][Full Text] [Related]
12. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312 [TBL] [Abstract][Full Text] [Related]
13. Effects of Mutations on the Aggregation Propensity of the Human Prion-Like Protein hnRNPA2B1. Paul KR; Molliex A; Cascarina S; Boncella AE; Taylor JP; Ross ED Mol Cell Biol; 2017 Apr; 37(8):. PubMed ID: 28137911 [TBL] [Abstract][Full Text] [Related]
14. Molecular structures of amyloid and prion fibrils: consensus versus controversy. Tycko R; Wickner RB Acc Chem Res; 2013 Jul; 46(7):1487-96. PubMed ID: 23294335 [TBL] [Abstract][Full Text] [Related]
15. A hydrophobic low-complexity region regulates aggregation of the yeast pyruvate kinase Cdc19 into amyloid-like aggregates Grignaschi E; Cereghetti G; Grigolato F; Kopp MRG; Caimi S; Faltova L; Saad S; Peter M; Arosio P J Biol Chem; 2018 Jul; 293(29):11424-11432. PubMed ID: 29853641 [TBL] [Abstract][Full Text] [Related]
16. Predicting the aggregation propensity of prion sequences. Espargaró A; Busquets MA; Estelrich J; Sabate R Virus Res; 2015 Sep; 207():127-35. PubMed ID: 25747492 [TBL] [Abstract][Full Text] [Related]
17. Natural variation of the amino-terminal glutamine-rich domain in Drosophila argonaute2 is not associated with developmental defects. Hain D; Bettencourt BR; Okamura K; Csorba T; Meyer W; Jin Z; Biggerstaff J; Siomi H; Hutvagner G; Lai EC; Welte M; Müller HA PLoS One; 2010 Dec; 5(12):e15264. PubMed ID: 21253006 [TBL] [Abstract][Full Text] [Related]
18. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry. Singh J; Udgaonkar JB J Mol Biol; 2013 Sep; 425(18):3510-21. PubMed ID: 23811055 [TBL] [Abstract][Full Text] [Related]
19. Micro-electron diffraction structure of the aggregation-driving N terminus of Drosophila neuronal protein Orb2A reveals amyloid-like β-sheets. Bowler JT; Sawaya MR; Boyer DR; Cascio D; Bali M; Eisenberg DS J Biol Chem; 2022 Oct; 298(10):102396. PubMed ID: 35988647 [TBL] [Abstract][Full Text] [Related]
20. Variation and Evolution in the Glutamine-Rich Repeat Region of Drosophila Argonaute-2. Palmer WH; Obbard DJ G3 (Bethesda); 2016 Aug; 6(8):2563-72. PubMed ID: 27317784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]