These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 37072918)
1. Sleep waves in a large-scale corticothalamic model constrained by activities intrinsic to neocortical networks and single thalamic neurons. Dervinis M; Crunelli V CNS Neurosci Ther; 2024 Mar; 30(3):e14206. PubMed ID: 37072918 [TBL] [Abstract][Full Text] [Related]
2. Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. Steriade M; Dossi RC; Nuñez A J Neurosci; 1991 Oct; 11(10):3200-17. PubMed ID: 1941080 [TBL] [Abstract][Full Text] [Related]
3. Spike-and-wave discharges of absence seizures in a sleep waves-constrained corticothalamic model. Dervinis M; Crunelli V CNS Neurosci Ther; 2024 Mar; 30(3):e14204. PubMed ID: 37032628 [TBL] [Abstract][Full Text] [Related]
4. Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. Contreras D; Steriade M J Physiol; 1996 Jan; 490 ( Pt 1)(Pt 1):159-79. PubMed ID: 8745285 [TBL] [Abstract][Full Text] [Related]
5. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. Steriade M; Contreras D; Curró Dossi R; Nuñez A J Neurosci; 1993 Aug; 13(8):3284-99. PubMed ID: 8340808 [TBL] [Abstract][Full Text] [Related]
6. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. Timofeev I; Steriade M J Neurophysiol; 1996 Dec; 76(6):4152-68. PubMed ID: 8985908 [TBL] [Abstract][Full Text] [Related]
7. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. Contreras D; Steriade M J Neurosci; 1995 Jan; 15(1 Pt 2):604-22. PubMed ID: 7823167 [TBL] [Abstract][Full Text] [Related]
8. The activity of thalamus and cerebral cortex neurons in rabbits during "slow wave-spindle" EEG complexes. Burikov AA; Bereshpolova YuI Neurosci Behav Physiol; 1999; 29(2):143-9. PubMed ID: 10432501 [TBL] [Abstract][Full Text] [Related]
9. Essential thalamic contribution to slow waves of natural sleep. David F; Schmiedt JT; Taylor HL; Orban G; Di Giovanni G; Uebele VN; Renger JJ; Lambert RC; Leresche N; Crunelli V J Neurosci; 2013 Dec; 33(50):19599-610. PubMed ID: 24336724 [TBL] [Abstract][Full Text] [Related]
10. Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. Steriade M; Nuñez A; Amzica F J Neurosci; 1993 Aug; 13(8):3266-83. PubMed ID: 8340807 [TBL] [Abstract][Full Text] [Related]
11. Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Steriade M Cereb Cortex; 1997 Sep; 7(6):583-604. PubMed ID: 9276182 [TBL] [Abstract][Full Text] [Related]
12. Thalamic activity during scalp slow waves in humans. Ujma PP; Szalárdy O; Fabó D; Erőss L; Bódizs R Neuroimage; 2022 Aug; 257():119325. PubMed ID: 35605767 [TBL] [Abstract][Full Text] [Related]
13. Dynamic Analysis of the Conditional Oscillator Underlying Slow Waves in Thalamocortical Neurons. David F; Crunelli V; Leresche N; Lambert RC Front Neural Circuits; 2016; 10():10. PubMed ID: 26941611 [TBL] [Abstract][Full Text] [Related]
14. Acute effect of carbamazepine on corticothalamic 5-9-Hz and thalamocortical spindle (10-16-Hz) oscillations in the rat. Zheng TW; O'Brien TJ; Kulikova SP; Reid CA; Morris MJ; Pinault D Eur J Neurosci; 2014 Mar; 39(5):788-99. PubMed ID: 24308357 [TBL] [Abstract][Full Text] [Related]
15. Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. Blumenfeld H; McCormick DA J Neurosci; 2000 Jul; 20(13):5153-62. PubMed ID: 10864972 [TBL] [Abstract][Full Text] [Related]
16. A thalamo-cortical neural mass model for the simulation of brain rhythms during sleep. Cona F; Lacanna M; Ursino M J Comput Neurosci; 2014 Aug; 37(1):125-48. PubMed ID: 24402459 [TBL] [Abstract][Full Text] [Related]
17. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons. Pinault D; Vergnes M; Marescaux C Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311 [TBL] [Abstract][Full Text] [Related]
18. The corticothalamic system in sleep. Steriade M Front Biosci; 2003 May; 8():d878-99. PubMed ID: 12700074 [TBL] [Abstract][Full Text] [Related]
19. [The mechanisms behind the generation of the slow oscillations found in EEG recordings during sleep]. Núñez-Molina A; Amzica F Rev Neurol; 2004 Oct 1-15; 39(7):628-33. PubMed ID: 15490348 [TBL] [Abstract][Full Text] [Related]
20. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. Buzsaki G; Bickford RG; Ponomareff G; Thal LJ; Mandel R; Gage FH J Neurosci; 1988 Nov; 8(11):4007-26. PubMed ID: 3183710 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]