These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37072946)

  • 21. Application of high-order lattice Boltzmann pseudopotential models.
    From CS; Sauret E; Galindo-Torres SA; Gu YT
    Phys Rev E; 2020 Mar; 101(3-1):033303. PubMed ID: 32290007
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lattice Boltzmann model for ternary fluids with solid particles.
    He Q; Li Y; Huang W; Hu Y; Wang Y
    Phys Rev E; 2020 Mar; 101(3-1):033307. PubMed ID: 32289995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional pseudopotential lattice Boltzmann model for multiphase flows at high density ratio.
    Wu S; Chen Y; Chen LQ
    Phys Rev E; 2020 Nov; 102(5-1):053308. PubMed ID: 33327084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Boundary scheme for linear heterogeneous surface reactions in the lattice Boltzmann method.
    Meng X; Guo Z
    Phys Rev E; 2016 Nov; 94(5-1):053307. PubMed ID: 27967133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alternative wetting boundary condition for the chemical-potential-based free-energy lattice Boltzmann model.
    Yu Y; Li Q; Huang RZ
    Phys Rev E; 2021 Jul; 104(1-2):015303. PubMed ID: 34412207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model.
    Li Q; Luo KH; Li XJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053301. PubMed ID: 23767651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows.
    Li Q; Luo KH; Li XJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016709. PubMed ID: 23005565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alternative curved-boundary treatment for the lattice Boltzmann method and its application in simulation of flow and potential fields.
    Mohammadipoor OR; Niazmand H; Mirbozorgi SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013309. PubMed ID: 24580362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lattice Boltzmann simulations of multiple-droplet interaction dynamics.
    Zhou W; Loney D; Fedorov AG; Degertekin FL; Rosen DW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033311. PubMed ID: 24730971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of multiphase flows.
    Li Q; Luo KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053307. PubMed ID: 24329379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Equation-of-state-dependent surface free-energy density for wettability in lattice Boltzmann method.
    Huang R; Yang H; Xing Y
    Phys Rev E; 2023 Feb; 107(2-2):025309. PubMed ID: 36932571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.
    Liu H; Ju Y; Wang N; Xi G; Zhang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033306. PubMed ID: 26465585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.
    Silva G; Semiao V
    Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Slip-flow boundary condition for straight walls in the lattice Boltzmann model.
    Szalmás L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066710. PubMed ID: 16907026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An alternative method to implement contact angle boundary condition and its application in hybrid lattice-Boltzmann finite-difference simulations of two-phase flows with immersed surfaces.
    Huang JJ; Wu J; Huang H
    Eur Phys J E Soft Matter; 2018 Feb; 41(2):17. PubMed ID: 29404782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reviving the local second-order boundary approach within the two-relaxation-time lattice Boltzmann modelling.
    Silva G; Ginzburg I
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2175):20190404. PubMed ID: 32564717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows.
    Kim SH; Pitsch H; Boyd ID
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026704. PubMed ID: 18352145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis.
    Ba Y; Liu H; Sun J; Zheng R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043306. PubMed ID: 24229303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lattice Boltzmann simulation of three-phase flows with moving contact lines on curved surfaces.
    Li S; Lu Y; Jiang F; Liu H
    Phys Rev E; 2021 Jul; 104(1-2):015310. PubMed ID: 34412346
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diffused bounce-back condition and refill algorithm for the lattice Boltzmann method.
    Krithivasan S; Wahal S; Ansumali S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033313. PubMed ID: 24730973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.