These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37073027)

  • 1. Electrical conductance of two-dimensional random percolating networks based on mixtures of nanowires and nanorings: A mean-field approach along with computer simulation.
    Tarasevich YY; Eserkepov AV
    Phys Rev E; 2023 Mar; 107(3-1):034105. PubMed ID: 37073027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical conductivity of random metallic nanowire networks: an analytical consideration along with computer simulation.
    Tarasevich YY; Vodolazskaya IV; Eserkepov AV
    Phys Chem Chem Phys; 2022 May; 24(19):11812-11819. PubMed ID: 35507328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resistivity in percolation networks of one-dimensional elements with a length distribution.
    Hicks J; Behnam A; Ural A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):012102. PubMed ID: 19257088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic degradation of metallic nanowire networks under electrical stress: a comparison between experiments and simulations.
    Charvin N; Resende J; Papanastasiou DT; Muñoz-Rojas D; Jiménez C; Nourdine A; Bellet D; Flandin L
    Nanoscale Adv; 2021 Feb; 3(3):675-681. PubMed ID: 36133849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical conductivity of nanorod-based transparent electrodes: Comparison of mean-field approaches.
    Tarasevich YY; Eserkepov AV; Vodolazskaya IV
    Phys Rev E; 2022 Apr; 105(4-1):044129. PubMed ID: 35590647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Percolating silicon nanowire networks with highly reproducible electrical properties.
    Serre P; Mongillo M; Periwal P; Baron T; Ternon C
    Nanotechnology; 2015 Jan; 26(1):015201. PubMed ID: 25483713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Imaging of the Onset of Electrical Conduction in Silver Nanowire Networks by Infrared Thermography: Evidence of Geometrical Quantized Percolation.
    Sannicolo T; Muñoz-Rojas D; Nguyen ND; Moreau S; Celle C; Simonato JP; Bréchet Y; Bellet D
    Nano Lett; 2016 Nov; 16(11):7046-7053. PubMed ID: 27753494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vertical drying of a suspension of sticks: Monte Carlo simulation for continuous two-dimensional problem.
    Lebovka NI; Tarasevich YY; Vygornitskii NV
    Phys Rev E; 2018 Feb; 97(2-1):022136. PubMed ID: 29548252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating simulations and experiments to predict sheet resistance and optical transmittance in nanowire films for transparent conductors.
    Mutiso RM; Sherrott MC; Rathmell AR; Wiley BJ; Winey KI
    ACS Nano; 2013 Sep; 7(9):7654-63. PubMed ID: 23930701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive Model for the Electrical Transport within Nanowire Networks.
    Forró C; Demkó L; Weydert S; Vörös J; Tybrandt K
    ACS Nano; 2018 Nov; 12(11):11080-11087. PubMed ID: 30398851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductance-strain behavior in silver-nanowire composites: network properties of a tunable strain sensor.
    Glier TE; Betker M; Grimm-Lebsanft B; Scheitz S; Matsuyama T; Akinsinde LO; Rübhausen M
    Nanotechnology; 2021 Jun; 32(36):. PubMed ID: 34032218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of Conductance Quantization in InSb Nanowire Networks.
    Fadaly EMT; Zhang H; Conesa-Boj S; Car D; Gül Ö; Plissard SR; Op Het Veld RLM; Kölling S; Kouwenhoven LP; Bakkers EPAM
    Nano Lett; 2017 Nov; 17(11):6511-6515. PubMed ID: 28665621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of electrical and thermomechanical properties of silver nanowire composites by the introduction of nonconductive nanoparticles: experiment and simulation.
    Nam S; Cho HW; Lim S; Kim D; Kim H; Sung BJ
    ACS Nano; 2013 Jan; 7(1):851-6. PubMed ID: 23237625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical Characterization for Electrical Conductivity of Two-Dimensional Nanocomposite Systems with Conducting Fiber Fillers.
    Lee J; Yun Y; Lee SH; Hwang J
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32456278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser annealing of nanocrystalline gold nanowires.
    Kim J; Lin CY; Xing W; Mecartney ML; Potma EO; Penner RM
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):6808-14. PubMed ID: 23855873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulations of electrical percolation in multicomponent thin films with nanofillers.
    Ni X; Hui C; Su N; Jiang W; Liu F
    Nanotechnology; 2018 Feb; 29(7):075401. PubMed ID: 29227967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of length dispersity and film fabrication on the sheet resistance of copper nanowire transparent conductors.
    Borchert JW; Stewart IE; Ye S; Rathmell AR; Wiley BJ; Winey KI
    Nanoscale; 2015 Sep; 7(34):14496-504. PubMed ID: 26260532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystalline Nanojoining Silver Nanowire Percolated Networks on Flexible Substrate.
    Nian Q; Saei M; Xu Y; Sabyasachi G; Deng B; Chen YP; Cheng GJ
    ACS Nano; 2015 Oct; 9(10):10018-31. PubMed ID: 26390281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical and network properties of flexible silver-nanowire composite electrodes under mechanical strain.
    Glier TE; Betker M; Witte M; Matsuyama T; Westphal L; Grimm-Lebsanft B; Biebl F; Akinsinde LO; Fischer F; Rübhausen M
    Nanoscale; 2020 Dec; 12(46):23831-23837. PubMed ID: 33237101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmability of nanowire networks.
    Bellew AT; Bell AP; McCarthy EK; Fairfield JA; Boland JJ
    Nanoscale; 2014 Aug; 6(16):9632-9. PubMed ID: 24990707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.