These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37073109)

  • 1. Long-Range Energy Transfer between Dye-Loaded Nanoparticles: Observation and Amplified Detection of Nucleic Acids.
    Biswas DS; Gaki P; Cruz Da Silva E; Combes A; Reisch A; Didier P; Klymchenko AS
    Adv Mater; 2023 Jul; 35(29):e2301402. PubMed ID: 37073109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-Functionalized Dye-Loaded Polymeric Nanoparticles: Ultrabright FRET Platform for Amplified Detection of Nucleic Acids.
    Melnychuk N; Klymchenko AS
    J Am Chem Soc; 2018 Aug; 140(34):10856-10865. PubMed ID: 30067022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smartphone-assisted detection of nucleic acids by light-harvesting FRET-based nanoprobe.
    Severi C; Melnychuk N; Klymchenko AS
    Biosens Bioelectron; 2020 Nov; 168():112515. PubMed ID: 32862092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.
    Mahajan PG; Bhopate DP; Kolekar GB; Patil SR
    J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cascade FRET-mediated ratiometric sensor for Cu2+ ions based on dual fluorescent ligand-coated polymer nanoparticles.
    Frigoli M; Ouadahi K; Larpent C
    Chemistry; 2009 Aug; 15(33):8319-30. PubMed ID: 19575425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Harvesting Nanoparticle Probes for FRET-Based Detection of Oligonucleotides with Single-Molecule Sensitivity.
    Melnychuk N; Egloff S; Runser A; Reisch A; Klymchenko AS
    Angew Chem Int Ed Engl; 2020 Apr; 59(17):6811-6818. PubMed ID: 31943649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplified Fluorescence
    Egloff S; Melnychuk N; Cruz Da Silva E; Reisch A; Martin S; Klymchenko AS
    ACS Nano; 2022 Jan; 16(1):1381-1394. PubMed ID: 34928570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplexed Biosensing and Bioimaging Using Lanthanide-Based Time-Gated Förster Resonance Energy Transfer.
    Qiu X; Xu J; Cardoso Dos Santos M; Hildebrandt N
    Acc Chem Res; 2022 Feb; 55(4):551-564. PubMed ID: 35084817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting Fast Exciton Diffusion in Dye-Doped Polymer Nanoparticles to Engineer Efficient Photoswitching.
    Trofymchuk K; Prodi L; Reisch A; Mély Y; Altenhöner K; Mattay J; Klymchenko AS
    J Phys Chem Lett; 2015 Jun; 6(12):2259-64. PubMed ID: 26266601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directional Photonic Wire Mediated by Homo-Förster Resonance Energy Transfer on a DNA Origami Platform.
    Nicoli F; Barth A; Bae W; Neukirchinger F; Crevenna AH; Lamb DC; Liedl T
    ACS Nano; 2017 Nov; 11(11):11264-11272. PubMed ID: 29063765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ratiometric Nanoparticle Probe Based on FRET-Amplified Phosphorescence for Oxygen Sensing with Minimal Phototoxicity.
    Ashokkumar P; Adarsh N; Klymchenko AS
    Small; 2020 Aug; 16(32):e2002494. PubMed ID: 32583632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule FRET ruler based on rigid DNA origami blocks.
    Stein IH; Schüller V; Böhm P; Tinnefeld P; Liedl T
    Chemphyschem; 2011 Feb; 12(3):689-95. PubMed ID: 21308944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitive detection of telomerase activity in cells using a DNA-based fluorescence resonance energy transfer nanoprobe.
    Yang G; Zhang Q; Ma L; Zheng Y; Tian F; Li H; Zhang P; Qu LL
    Anal Chim Acta; 2020 Feb; 1098():133-139. PubMed ID: 31948576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Dye-Loaded and Thin-Shell Fluorescent Polymeric Nanoparticles for Enhanced FRET Imaging of Protein-Specific Sialylation on the Cell Surface.
    Zhao T; Masuda T; Miyoshi E; Takai M
    Anal Chem; 2020 Oct; 92(19):13271-13280. PubMed ID: 32900193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding FRET in Upconversion Nanoparticle Nucleic Acid Biosensors.
    Bhuckory S; Lahtinen S; Höysniemi N; Guo J; Qiu X; Soukka T; Hildebrandt N
    Nano Lett; 2023 Mar; 23(6):2253-2261. PubMed ID: 36729707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FRET in a Polymeric Nanocarrier: IR-780 and IR-780-PDMS.
    Wolf MP; Liu K; Horn TFW; Hunziker P
    Biomacromolecules; 2019 Nov; 20(11):4065-4074. PubMed ID: 31603657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrabright Fluorescent Polymeric Nanoparticles with a Stealth Pluronic Shell for Live Tracking in the Mouse Brain.
    Khalin I; Heimburger D; Melnychuk N; Collot M; Groschup B; Hellal F; Reisch A; Plesnila N; Klymchenko AS
    ACS Nano; 2020 Aug; 14(8):9755-9770. PubMed ID: 32680421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotinylated Fluorescent Polymeric Nanoparticles for Enhanced Immunostaining.
    Yudhistira T; Da Silva EC; Combes A; Lehmann M; Reisch A; Klymchenko AS
    Small Methods; 2023 Apr; 7(4):e2201452. PubMed ID: 36808832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Er
    Francés-Soriano L; Peruffo N; Natile MM; Hildebrandt N
    Analyst; 2020 Apr; 145(7):2543-2553. PubMed ID: 32043497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanophotonic control of the Förster resonance energy transfer efficiency.
    Blum C; Zijlstra N; Lagendijk A; Wubs M; Mosk AP; Subramaniam V; Vos WL
    Phys Rev Lett; 2012 Nov; 109(20):203601. PubMed ID: 23215487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.