These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37073403)

  • 1. Size distributions of intracellular condensates reflect competition between coalescence and nucleation.
    Lee DSW; Choi CH; Sanders DW; Beckers L; Riback JA; Brangwynne CP; Wingreen NS
    Nat Phys; 2023; 19(4):586-596. PubMed ID: 37073403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleation landscape of biomolecular condensates.
    Shimobayashi SF; Ronceray P; Sanders DW; Haataja MP; Brangwynne CP
    Nature; 2021 Nov; 599(7885):503-506. PubMed ID: 34552246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic interplay between droplet maturation and coalescence modulates shape of aged protein condensates.
    Garaizar A; Espinosa JR; Joseph JA; Collepardo-Guevara R
    Sci Rep; 2022 Mar; 12(1):4390. PubMed ID: 35293386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic particle unbinding modulates growth dynamics and size of transcription factor condensates in living cells.
    Muñoz-Gil G; Romero-Aristizabal C; Mateos N; Campelo F; de Llobet Cucalon LI; Beato M; Lewenstein M; Garcia-Parajo MF; Torreno-Pina JA
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2200667119. PubMed ID: 35881789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleation of Biomolecular Condensates from Finite-Sized Simulations.
    Li L; Paloni M; Finney AR; Barducci A; Salvalaglio M
    J Phys Chem Lett; 2023 Feb; 14(7):1748-1755. PubMed ID: 36758221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model for organization and regulation of nuclear condensates by gene activity.
    Schede HH; Natarajan P; Chakraborty AK; Shrinivas K
    Nat Commun; 2023 Jul; 14(1):4152. PubMed ID: 37438363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoscale molecular assembly is favored by the active, crowded cytoplasm.
    Shu T; Mitra G; Alberts J; Viana MP; Levy ED; Hocky GM; Holt LJ
    bioRxiv; 2023 Sep; ():. PubMed ID: 37781612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation controlled by condensate rheology.
    Pönisch W; Michaels TCT; Weber CA
    Biophys J; 2023 Jan; 122(1):197-214. PubMed ID: 36369755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA at the surface of phase-separated condensates impacts their size and number.
    Cochard A; Garcia-Jove Navarro M; Piroska L; Kashida S; Kress M; Weil D; Gueroui Z
    Biophys J; 2022 May; 121(9):1675-1690. PubMed ID: 35364105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-dimensional condensation of intracellular biomolecules.
    Yanagawa M; Shimobayashi SF
    J Biochem; 2024 Feb; 175(2):179-186. PubMed ID: 37993409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous nucleation and fast aggregate-dependent proliferation of α-synuclein aggregates within liquid condensates at neutral pH.
    Dada ST; Hardenberg MC; Toprakcioglu Z; Mrugalla LK; Cali MP; McKeon MO; Klimont E; Michaels TCT; Knowles TPJ; Vendruscolo M
    Proc Natl Acad Sci U S A; 2023 Feb; 120(9):e2208792120. PubMed ID: 36802433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering DNA-based synthetic condensates with programmable material properties, compositions, and functionalities.
    Do S; Lee C; Lee T; Kim DN; Shin Y
    Sci Adv; 2022 Oct; 8(41):eabj1771. PubMed ID: 36240277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size conservation emerges spontaneously in biomolecular condensates formed by scaffolds and surfactant clients.
    Sanchez-Burgos I; Joseph JA; Collepardo-Guevara R; Espinosa JR
    Sci Rep; 2021 Jul; 11(1):15241. PubMed ID: 34315935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates.
    Welsh TJ; Krainer G; Espinosa JR; Joseph JA; Sridhar A; Jahnel M; Arter WE; Saar KL; Alberti S; Collepardo-Guevara R; Knowles TPJ
    Nano Lett; 2022 Jan; 22(2):612-621. PubMed ID: 35001622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a molecular dynamics-based coalescence model for DSMC simulations of ammonia condensate flows.
    Li Z; Levin DA
    J Chem Phys; 2011 Mar; 134(12):124306. PubMed ID: 21456661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micellization: A new principle in the formation of biomolecular condensates.
    Yamazaki T; Yamamoto T; Hirose T
    Front Mol Biosci; 2022; 9():974772. PubMed ID: 36106018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing Inhomogeneous Diffusion in the Microenvironments of Phase-Separated Polymers under Confinement.
    Shayegan M; Tahvildari R; Metera K; Kisley L; Michnick SW; Leslie SR
    J Am Chem Soc; 2019 May; 141(19):7751-7757. PubMed ID: 31017394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay of condensate material properties and chromatin heterogeneity governs nuclear condensate ripening.
    Banerjee DS; Chigumira T; Lackner RM; Kratz JC; Chenoweth DM; Banerjee S; Zhang H
    bioRxiv; 2024 May; ():. PubMed ID: 38766065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of Surface Tension Effects and Nucleation-and-Growth Rates during Self-Assembly of Biological Condensates.
    Sárkány Z; Rocha F; Bratek-Skicki A; Tompa P; Macedo-Ribeiro S; Martins PM
    Adv Sci (Weinh); 2023 Aug; 10(23):e2301501. PubMed ID: 37279376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of sticker-spacer energetics governs the coalescence of metastable biomolecular condensates.
    Chattaraj A; Shakhnovich EI
    bioRxiv; 2024 Jul; ():. PubMed ID: 37873097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.