These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 37073467)

  • 1. Handcuffed antisense oligonucleotides for light-controlled cell-free expression.
    Hartmann D; Booth MJ
    Chem Commun (Camb); 2023 May; 59(38):5685-5688. PubMed ID: 37073467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accessible light-controlled knockdown of cell-free protein synthesis using phosphorothioate-caged antisense oligonucleotides.
    Hartmann D; Booth MJ
    Commun Chem; 2023 Apr; 6(1):59. PubMed ID: 37005479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target gene knockdown by 2',4'-BNA/LNA antisense oligonucleotides in zebrafish.
    Itoh M; Nakaura M; Imanishi T; Obika S
    Nucleic Acid Ther; 2014 Jun; 24(3):186-91. PubMed ID: 24460393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chitosan Nanocomplexes for the Delivery of ENaC Antisense Oligonucleotides to Airway Epithelial Cells.
    Kolonko AK; Bangel-Ruland N; Goycoolea FM; Weber WM
    Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32260534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antisense therapeutics: is it as simple as complementary base recognition?
    Agrawal S; Kandimalla ER
    Mol Med Today; 2000 Feb; 6(2):72-81. PubMed ID: 10652480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composites of Nucleic Acids and Boron Clusters (C
    Kaniowski D; Ebenryter-Olbińska K; Kulik K; Suwara J; Cypryk W; Jakóbik-Kolon A; Leśnikowski Z; Nawrot B
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34064412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilin-1 and Stabilin-2 are specific receptors for the cellular internalization of phosphorothioate-modified antisense oligonucleotides (ASOs) in the liver.
    Miller CM; Donner AJ; Blank EE; Egger AW; Kellar BM; Østergaard ME; Seth PP; Harris EN
    Nucleic Acids Res; 2016 Apr; 44(6):2782-94. PubMed ID: 26908652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Mechanisms of Antisense Oligonucleotides.
    Crooke ST
    Nucleic Acid Ther; 2017 Apr; 27(2):70-77. PubMed ID: 28080221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting of repeated sequences unique to a gene results in significant increases in antisense oligonucleotide potency.
    Vickers TA; Freier SM; Bui HH; Watt A; Crooke ST
    PLoS One; 2014; 9(10):e110615. PubMed ID: 25334092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tips for Successful lncRNA Knockdown Using Gapmers.
    Lennox KA; Behlke MA
    Methods Mol Biol; 2020; 2176():121-140. PubMed ID: 32865787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient electroporation of neuronal cells using synthetic oligonucleotides: identifying duplex RNA and antisense oligonucleotide activators of human frataxin expression.
    Shen X; Beasley S; Putman JN; Li Y; Prakash TP; Rigo F; Napierala M; Corey DR
    RNA; 2019 Sep; 25(9):1118-1129. PubMed ID: 31151992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amido-bridged nucleic acids (AmNAs): synthesis, duplex stability, nuclease resistance, and in vitro antisense potency.
    Yahara A; Shrestha AR; Yamamoto T; Hari Y; Osawa T; Yamaguchi M; Nishida M; Kodama T; Obika S
    Chembiochem; 2012 Nov; 13(17):2513-6. PubMed ID: 23081931
    [No Abstract]   [Full Text] [Related]  

  • 13. Knockdown of nuclear-retained long noncoding RNAs using modified DNA antisense oligonucleotides.
    Zong X; Huang L; Tripathi V; Peralta R; Freier SM; Guo S; Prasanth KV
    Methods Mol Biol; 2015; 1262():321-31. PubMed ID: 25555591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antisense Oligonucleotide-Mediated Transcript Knockdown in Zebrafish.
    Pauli A; Montague TG; Lennox KA; Behlke MA; Schier AF
    PLoS One; 2015; 10(10):e0139504. PubMed ID: 26436892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular delivery and photochemical activation of antisense agents through a nucleobase caging strategy.
    Govan JM; Uprety R; Thomas M; Lusic H; Lively MO; Deiters A
    ACS Chem Biol; 2013 Oct; 8(10):2272-82. PubMed ID: 23915424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulation of renal gene expression using oligonucleotides.
    Lakhia R; Mishra A; Patel V
    Methods Cell Biol; 2019; 154():109-120. PubMed ID: 31493813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antisense-mediated exon-skipping to induce gene knockdown.
    Disterer P; Khoo B
    Methods Mol Biol; 2012; 867():289-305. PubMed ID: 22454069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antisense oligonucleotides and spinal muscular atrophy: skipping along.
    Burghes AH; McGovern VL
    Genes Dev; 2010 Aug; 24(15):1574-9. PubMed ID: 20679391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and cellular barriers limiting the effectiveness of antisense oligonucleotides.
    Roth CM
    Biophys J; 2005 Oct; 89(4):2286-95. PubMed ID: 16055530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antisense oligonucleotides targeting angiotensinogen: insights from animal studies.
    Wu CH; Wang Y; Ma M; Mullick AE; Crooke RM; Graham MJ; Daugherty A; Lu HS
    Biosci Rep; 2019 Jan; 39(1):. PubMed ID: 30530571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.