BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37073826)

  • 1. A systematic proximity ligation approach to studying protein-substrate specificity identifies the substrate spectrum of the Ssh1 translocon.
    Cohen N; Aviram N; Schuldiner M
    EMBO J; 2023 Jun; 42(11):e113385. PubMed ID: 37073826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A toolbox for systematic discovery of stable and transient protein interactors in baker's yeast.
    Fenech EJ; Cohen N; Kupervaser M; Gazi Z; Schuldiner M
    Mol Syst Biol; 2023 Feb; 19(2):e11084. PubMed ID: 36651308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards improving proximity labeling by the biotin ligase BirA.
    Oostdyk LT; Shank L; Jividen K; Dworak N; Sherman NE; Paschal BM
    Methods; 2019 Mar; 157():66-79. PubMed ID: 30419333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insulin receptor substrate-4 binds to Slingshot-1 phosphatase and promotes cofilin dephosphorylation.
    Homma Y; Kanno SI; Sasaki K; Nishita M; Yasui A; Asano T; Ohashi K; Mizuno K
    J Biol Chem; 2014 Sep; 289(38):26302-26313. PubMed ID: 25100728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dissection of the mechanisms of substrate recognition and F-actin-mediated activation of cofilin-phosphatase Slingshot-1.
    Kurita S; Watanabe Y; Gunji E; Ohashi K; Mizuno K
    J Biol Chem; 2008 Nov; 283(47):32542-52. PubMed ID: 18809681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proximity-Dependent In Vivo Biotin Labeling for Interactome Mapping in Marchantia polymorpha.
    Melkonian K; Stolze SC; Harzen A; Nakagami H
    Methods Mol Biol; 2023; 2581():295-308. PubMed ID: 36413326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards the in vivo identification of protein-protein interactions.
    Suzuki Y; Kadomatsu K; Sakamoto K
    J Biochem; 2023 May; 173(6):413-415. PubMed ID: 36821413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phage display evolution of a peptide substrate for yeast biotin ligase and application to two-color quantum dot labeling of cell surface proteins.
    Chen I; Choi YA; Ting AY
    J Am Chem Soc; 2007 May; 129(20):6619-25. PubMed ID: 17472384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro import experiments with semi-intact cells suggest a role of the Sec61 paralog Ssh1 in mitochondrial biogenesis.
    Laborenz J; Hansen K; Prescianotto-Baschong C; Spang A; Herrmann JM
    Biol Chem; 2019 Aug; 400(9):1229-1240. PubMed ID: 31199753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global investigation of protein-protein interactions in yeast Saccharomyces cerevisiae using re-occurring short polypeptide sequences.
    Pitre S; North C; Alamgir M; Jessulat M; Chan A; Luo X; Green JR; Dumontier M; Dehne F; Golshani A
    Nucleic Acids Res; 2008 Aug; 36(13):4286-94. PubMed ID: 18586826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Skyline for Analysis of Protein-Protein Interactions In Vivo.
    Kulyyassov A
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroID2: A Novel Biotin Ligase Enables Rapid Proximity-Dependent Proteomics.
    Johnson BS; Chafin L; Farkas D; Adair J; Elhance A; Farkas L; Bednash JS; Londino JD
    Mol Cell Proteomics; 2022 Jul; 21(7):100256. PubMed ID: 35688383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AirID-Based Proximity Labeling for Protein-Protein Interaction in Plants.
    Zada A; Khan I; Zhang M; Cheng Y; Hu X
    J Vis Exp; 2022 Sep; (187):. PubMed ID: 36190279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AirID, a novel proximity biotinylation enzyme, for analysis of protein-protein interactions.
    Kido K; Yamanaka S; Nakano S; Motani K; Shinohara S; Nozawa A; Kosako H; Ito S; Sawasaki T
    Elife; 2020 May; 9():. PubMed ID: 32391793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meet the neighbors: Mapping local protein interactomes by proximity-dependent labeling with BioID.
    Varnaitė R; MacNeill SA
    Proteomics; 2016 Oct; 16(19):2503-2518. PubMed ID: 27329485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper inhibits protein maturation in the secretory pathway by targeting the Sec61 translocon in Saccharomyces cerevisiae.
    Saha N; Tomar RS
    J Biol Chem; 2022 Aug; 298(8):102170. PubMed ID: 35738397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the tRNA-binding protein Arc1p as a novel target of in vivo biotinylation in Saccharomyces cerevisiae.
    Kim HS; Hoja U; Stolz J; Sauer G; Schweizer E
    J Biol Chem; 2004 Oct; 279(41):42445-52. PubMed ID: 15272000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slingshot-Cofilin activation mediates mitochondrial and synaptic dysfunction via Aβ ligation to β1-integrin conformers.
    Woo JA; Zhao X; Khan H; Penn C; Wang X; Joly-Amado A; Weeber E; Morgan D; Kang DE
    Cell Death Differ; 2015 Jun; 22(6):921-34. PubMed ID: 25698445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cold sensitivity of a mutant of Saccharomyces cerevisiae lacking a mitochondrial heat shock protein 70 is suppressed by loss of mitochondrial DNA.
    Schilke B; Forster J; Davis J; James P; Walter W; Laloraya S; Johnson J; Miao B; Craig E
    J Cell Biol; 1996 Aug; 134(3):603-13. PubMed ID: 8707841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cotranslational stabilization of Sec62/63 within the ER Sec61 translocon is controlled by distinct substrate-driven translocation events.
    Conti BJ; Devaraneni PK; Yang Z; David LL; Skach WR
    Mol Cell; 2015 Apr; 58(2):269-83. PubMed ID: 25801167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.