BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 37073901)

  • 1. Development and External Validation of an Artificial Intelligence Model for Identifying Radiology Reports Containing Recommendations for Additional Imaging.
    Abbasi N; Lacson R; Kapoor N; Licaros A; Guenette JP; Burk KS; Hammer M; Desai S; Eappen S; Saini S; Khorasani R
    AJR Am J Roentgenol; 2023 Sep; 221(3):377-385. PubMed ID: 37073901
    [No Abstract]   [Full Text] [Related]  

  • 2. Developing Artificial Intelligence Models for Extracting Oncologic Outcomes from Japanese Electronic Health Records.
    Araki K; Matsumoto N; Togo K; Yonemoto N; Ohki E; Xu L; Hasegawa Y; Satoh D; Takemoto R; Miyazaki T
    Adv Ther; 2023 Mar; 40(3):934-950. PubMed ID: 36547809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Natural Language Processing Model for COVID-19 Detection Based on Dutch General Practice Electronic Health Records by Using Bidirectional Encoder Representations From Transformers: Development and Validation Study.
    Homburg M; Meijer E; Berends M; Kupers T; Olde Hartman T; Muris J; de Schepper E; Velek P; Kuiper J; Berger M; Peters L
    J Med Internet Res; 2023 Oct; 25():e49944. PubMed ID: 37792444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic text classification of actionable radiology reports of tinnitus patients using bidirectional encoder representations from transformer (BERT) and in-domain pre-training (IDPT).
    Li J; Lin Y; Zhao P; Liu W; Cai L; Sun J; Zhao L; Yang Z; Song H; Lv H; Wang Z
    BMC Med Inform Decis Mak; 2022 Jul; 22(1):200. PubMed ID: 35907966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic detection of actionable radiology reports using bidirectional encoder representations from transformers.
    Nakamura Y; Hanaoka S; Nomura Y; Nakao T; Miki S; Watadani T; Yoshikawa T; Hayashi N; Abe O
    BMC Med Inform Decis Mak; 2021 Sep; 21(1):262. PubMed ID: 34511100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Machine Learning to Identify Follow-Up Recommendations in Radiology Reports.
    Carrodeguas E; Lacson R; Swanson W; Khorasani R
    J Am Coll Radiol; 2019 Mar; 16(3):336-343. PubMed ID: 30600162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning Approach for Negation and Speculation Detection for Automated Important Finding Flagging and Extraction in Radiology Report: Internal Validation and Technique Comparison Study.
    Weng KH; Liu CF; Chen CJ
    JMIR Med Inform; 2023 Apr; 11():e46348. PubMed ID: 37097731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of BERT (Bidirectional Encoder Representations from Transformers)-Based Deep Learning Method for Extracting Evidences in Chinese Radiology Reports: Development of a Computer-Aided Liver Cancer Diagnosis Framework.
    Liu H; Zhang Z; Xu Y; Wang N; Huang Y; Yang Z; Jiang R; Chen H
    J Med Internet Res; 2021 Jan; 23(1):e19689. PubMed ID: 33433395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural language processing to predict isocitrate dehydrogenase genotype in diffuse glioma using MR radiology reports.
    Kim M; Ong KT; Choi S; Yeo J; Kim S; Han K; Park JE; Kim HS; Choi YS; Ahn SS; Kim J; Lee SK; Sohn B
    Eur Radiol; 2023 Nov; 33(11):8017-8025. PubMed ID: 37566271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Qualifying Certainty in Radiology Reports through Deep Learning-Based Natural Language Processing.
    Liu F; Zhou P; Baccei SJ; Masciocchi MJ; Amornsiripanitch N; Kiefe CI; Rosen MP
    AJNR Am J Neuroradiol; 2021 Oct; 42(10):1755-1761. PubMed ID: 34413062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Information extraction from weakly structured radiological reports with natural language queries.
    Dada A; Ufer TL; Kim M; Hasin M; Spieker N; Forsting M; Nensa F; Egger J; Kleesiek J
    Eur Radiol; 2024 Jan; 34(1):330-337. PubMed ID: 37505252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning based natural language processing of radiology reports in orthopaedic trauma.
    Olthof AW; Shouche P; Fennema EM; IJpma FFA; Koolstra RHC; Stirler VMA; van Ooijen PMA; Cornelissen LJ
    Comput Methods Programs Biomed; 2021 Sep; 208():106304. PubMed ID: 34333208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RadBERT: Adapting Transformer-based Language Models to Radiology.
    Yan A; McAuley J; Lu X; Du J; Chang EY; Gentili A; Hsu CN
    Radiol Artif Intell; 2022 Jul; 4(4):e210258. PubMed ID: 35923376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural Language Processing Model for Identifying Critical Findings-A Multi-Institutional Study.
    Banerjee I; Davis MA; Vey BL; Mazaheri S; Khan F; Zavaletta V; Gerard R; Gichoya JW; Patel B
    J Digit Imaging; 2023 Feb; 36(1):105-113. PubMed ID: 36344632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a BERT Natural Language Processing Model for Automating CT and MRI Triage and Protocol Selection.
    Yao J; Alabousi A; Mironov O
    Can Assoc Radiol J; 2024 Jun; ():8465371241255895. PubMed ID: 38832645
    [No Abstract]   [Full Text] [Related]  

  • 16. Bidirectional Encoder Representations from Transformers in Radiology: A Systematic Review of Natural Language Processing Applications.
    Gorenstein L; Konen E; Green M; Klang E
    J Am Coll Radiol; 2024 Jun; 21(6):914-941. PubMed ID: 38302036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural language processing deep learning models for the differential between high-grade gliomas and metastasis: what if the key is how we report them?
    Martín-Noguerol T; López-Úbeda P; Pons-Escoda A; Luna A
    Eur Radiol; 2024 Mar; 34(3):2113-2120. PubMed ID: 37665389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of asthma control factor in clinical notes using a hybrid deep learning model.
    Agnikula Kshatriya BS; Sagheb E; Wi CI; Yoon J; Seol HY; Juhn Y; Sohn S
    BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 7):272. PubMed ID: 34753481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Validation of a Model to Identify Critical Brain Injuries Using Natural Language Processing of Text Computed Tomography Reports.
    Torres-Lopez VM; Rovenolt GE; Olcese AJ; Garcia GE; Chacko SM; Robinson A; Gaiser E; Acosta J; Herman AL; Kuohn LR; Leary M; Soto AL; Zhang Q; Fatima S; Falcone GJ; Payabvash MS; Sharma R; Struck AF; Sheth KN; Westover MB; Kim JA
    JAMA Netw Open; 2022 Aug; 5(8):e2227109. PubMed ID: 35972739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the Ability of Open-Source Artificial Intelligence to Predict Accepting-Journal Impact Factor and Eigenfactor Score Using Academic Article Abstracts: Cross-sectional Machine Learning Analysis.
    Macri C; Bacchi S; Teoh SC; Lim WY; Lam L; Patel S; Slee M; Casson R; Chan W
    J Med Internet Res; 2023 Mar; 25():e42789. PubMed ID: 36881455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.