These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 37073981)

  • 1. Spike timing-dependent plasticity alters electrosensory neuron synaptic strength in vitro but does not consistently predict changes in sensory tuning in vivo.
    Lube AJ; Ma X; Carlson BA
    J Neurophysiol; 2023 May; 129(5):1127-1144. PubMed ID: 37073981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-hebbian spike-timing-dependent plasticity and adaptive sensory processing.
    Roberts PD; Leen TK
    Front Comput Neurosci; 2010; 4():156. PubMed ID: 21228915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spike-timing-dependent plasticity of neocortical excitatory synapses on inhibitory interneurons depends on target cell type.
    Lu JT; Li CY; Zhao JP; Poo MM; Zhang XH
    J Neurosci; 2007 Sep; 27(36):9711-20. PubMed ID: 17804631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
    Sgritta M; Locatelli F; Soda T; Prestori F; D'Angelo EU
    J Neurosci; 2017 Mar; 37(11):2809-2823. PubMed ID: 28188217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-term depression, temporal summation, and onset inhibition shape interval tuning in midbrain neurons.
    Baker CA; Carlson BA
    J Neurosci; 2014 Oct; 34(43):14272-87. PubMed ID: 25339741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling inhibitory plasticity in the electrosensory system of mormyrid electric fish.
    Roberts PD
    J Neurophysiol; 2000 Oct; 84(4):2035-47. PubMed ID: 11024096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral analysis of input spike trains by spike-timing-dependent plasticity.
    Gilson M; Fukai T; Burkitt AN
    PLoS Comput Biol; 2012; 8(7):e1002584. PubMed ID: 22792056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal-pattern recognition by single neurons in a sensory pathway devoted to social communication behavior.
    Carlson BA
    J Neurosci; 2009 Jul; 29(30):9417-28. PubMed ID: 19641105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasticity in an electrosensory system. I. General features of a dynamic sensory filter.
    Bastian J
    J Neurophysiol; 1996 Oct; 76(4):2483-96. PubMed ID: 8899621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals.
    Baker CA; Ma L; Casareale CR; Carlson BA
    J Neurosci; 2016 Aug; 36(34):8985-9000. PubMed ID: 27559179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic stability of temporally shifted spike-timing dependent plasticity.
    Babadi B; Abbott LF
    PLoS Comput Biol; 2010 Nov; 6(11):e1000961. PubMed ID: 21079671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of synaptic plasticity by the coactivation of spatially distinct synaptic inputs in rat hippocampal CA1 apical dendrites.
    Kondo M; Kitajima T; Fujii S; Tsukada M; Aihara T
    Brain Res; 2013 Aug; 1526():1-14. PubMed ID: 23711890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial Breakdown of Input Specificity of STDP at Individual Synapses Promotes New Learning.
    Volgushev M; Chen JY; Ilin V; Goz R; Chistiakova M; Bazhenov M
    J Neurosci; 2016 Aug; 36(34):8842-55. PubMed ID: 27559167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spike timing-dependent plasticity at GABAergic synapses in the ventral tegmental area.
    Kodangattil JN; Dacher M; Authement ME; Nugent FS
    J Physiol; 2013 Oct; 591(19):4699-710. PubMed ID: 23897235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A diversity of synaptic filters are created by temporal summation of excitation and inhibition.
    George AA; Lyons-Warren AM; Ma X; Carlson BA
    J Neurosci; 2011 Oct; 31(41):14721-34. PubMed ID: 21994388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. D1/D5 Dopamine Receptors and mGluR5 Jointly Enable Non-Hebbian Long-Term Potentiation at Sensory Synapses onto Lamina I Spinoparabrachial Neurons.
    Li J; Price TJ; Baccei ML
    J Neurosci; 2022 Jan; 42(3):350-361. PubMed ID: 34815314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hebbian and non-Hebbian timing-dependent plasticity in the hippocampal CA3 region.
    Jackson MB
    Hippocampus; 2020 Dec; 30(12):1241-1256. PubMed ID: 32818312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity.
    Song S; Miller KD; Abbott LF
    Nat Neurosci; 2000 Sep; 3(9):919-26. PubMed ID: 10966623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adrenergic gating of Hebbian spike-timing-dependent plasticity in cortical interneurons.
    Huang S; Huganir RL; Kirkwood A
    J Neurosci; 2013 Aug; 33(32):13171-8. PubMed ID: 23926270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity of feedback inputs in the apteronotid electrosensory system.
    Bastian J
    J Exp Biol; 1999 May; 202(Pt 10):1327-37. PubMed ID: 10210673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.