These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 37073981)

  • 21. Storage of a sensory pattern by anti-Hebbian synaptic plasticity in an electric fish.
    Bell CC; Caputi A; Grant K; Serrier J
    Proc Natl Acad Sci U S A; 1993 May; 90(10):4650-4. PubMed ID: 8506312
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasticity in an electrosensory system. III. Contrasting properties of spatially segregated dendritic inputs.
    Bastian J
    J Neurophysiol; 1998 Apr; 79(4):1839-57. PubMed ID: 9535952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling the Short-Term Dynamics of
    Ghanbari A; Ren N; Keine C; Stoelzel C; Englitz B; Swadlow HA; Stevenson IH
    J Neurosci; 2020 May; 40(21):4185-4202. PubMed ID: 32303648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterosynaptic plasticity prevents runaway synaptic dynamics.
    Chen JY; Lonjers P; Lee C; Chistiakova M; Volgushev M; Bazhenov M
    J Neurosci; 2013 Oct; 33(40):15915-29. PubMed ID: 24089497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stability and Competition in Multi-spike Models of Spike-Timing Dependent Plasticity.
    Babadi B; Abbott LF
    PLoS Comput Biol; 2016 Mar; 12(3):e1004750. PubMed ID: 26939080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-term population spike-timing-dependent plasticity promotes synaptic tagging but not cross-tagging in rat hippocampal area CA1.
    Pang KKL; Sharma M; Krishna-K K; Behnisch T; Sajikumar S
    Proc Natl Acad Sci U S A; 2019 Mar; 116(12):5737-5746. PubMed ID: 30819889
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Hypothetical Model Concerning How Spike-Timing-Dependent Plasticity Contributes to Neural Circuit Formation and Initiation of the Critical Period in Barrel Cortex.
    Kimura F; Itami C
    J Neurosci; 2019 May; 39(20):3784-3791. PubMed ID: 30877173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinct Heterosynaptic Plasticity in Fast Spiking and Non-Fast-Spiking Inhibitory Neurons in Rat Visual Cortex.
    Chistiakova M; Ilin V; Roshchin M; Bannon N; Malyshev A; Kisvárday Z; Volgushev M
    J Neurosci; 2019 Aug; 39(35):6865-6878. PubMed ID: 31300522
    [TBL] [Abstract][Full Text] [Related]  

  • 29. What can a neuron learn with spike-timing-dependent plasticity?
    Legenstein R; Naeger C; Maass W
    Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconciling the STDP and BCM models of synaptic plasticity in a spiking recurrent neural network.
    Bush D; Philippides A; Husbands P; O'Shea M
    Neural Comput; 2010 Aug; 22(8):2059-85. PubMed ID: 20438333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Etomidate reduces initiation of backpropagating dendritic action potentials: implications for sensory processing and synaptic plasticity during anesthesia.
    van den Burg EH; Engelmann J; Bacelo J; Gómez L; Grant K
    J Neurophysiol; 2007 Mar; 97(3):2373-84. PubMed ID: 17202233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multicoding in neural information transfer suggested by mathematical analysis of the frequency-dependent synaptic plasticity in vivo.
    Hata K; Araki O; Yokoi O; Kusakabe T; Yamamoto Y; Ito S; Nikuni T
    Sci Rep; 2020 Aug; 10(1):13974. PubMed ID: 32811844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Paired Stimulation for Spike-Timing-Dependent Plasticity in Primate Sensorimotor Cortex.
    Seeman SC; Mogen BJ; Fetz EE; Perlmutter SI
    J Neurosci; 2017 Feb; 37(7):1935-1949. PubMed ID: 28093479
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spike timing-dependent plasticity: a Hebbian learning rule.
    Caporale N; Dan Y
    Annu Rev Neurosci; 2008; 31():25-46. PubMed ID: 18275283
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat.
    Jacob V; Brasier DJ; Erchova I; Feldman D; Shulz DE
    J Neurosci; 2007 Feb; 27(6):1271-84. PubMed ID: 17287502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Central control of dendritic spikes shapes the responses of Purkinje-like cells through spike timing-dependent synaptic plasticity.
    Sawtell NB; Williams A; Bell CC
    J Neurosci; 2007 Feb; 27(7):1552-65. PubMed ID: 17301164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning rules for spike timing-dependent plasticity depend on dendritic synapse location.
    Letzkus JJ; Kampa BM; Stuart GJ
    J Neurosci; 2006 Oct; 26(41):10420-9. PubMed ID: 17035526
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physiology of electrosensory lateral line lobe neurons in Gnathonemus petersii.
    Sugawara Y; Grant K; Han V; Bell CC
    J Exp Biol; 1999 May; 202(Pt 10):1301-9. PubMed ID: 10210670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Muscarinic acetylcholine receptors control baseline activity and Hebbian stimulus timing-dependent plasticity in fusiform cells of the dorsal cochlear nucleus.
    Stefanescu RA; Shore SE
    J Neurophysiol; 2017 Mar; 117(3):1229-1238. PubMed ID: 28003407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.