These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Membrane-active amino acid-coupled polyetheramine derivatives with high selectivity and broad-spectrum antibacterial activity. Li H; Li Y; Wang Y; Liu L; Dong H; Satoh T Acta Biomater; 2022 Apr; 142():136-148. PubMed ID: 35158080 [TBL] [Abstract][Full Text] [Related]
4. Cytotoxicity and anti-biofilm activities of biogenic cadmium nanoparticles and cadmium nitrate: a preliminary study. Adeli-Sardou M; Shakibaie M; Forootanfar H; Jabari-Morouei F; Riahi-Madvar S; Ghafari-Shahrbabaki SS; Mehrabani M World J Microbiol Biotechnol; 2022 Oct; 38(12):246. PubMed ID: 36289108 [TBL] [Abstract][Full Text] [Related]
5. Antimicrobial, Biofilm Inhibitory and Anti-infective Activity of Metallic Nanoparticles Against Pathogens MRSA and Pseudomonas aeruginosa PA01. Aswathanarayan JB; Vittal RR Pharm Nanotechnol; 2017; 5(2):148-153. PubMed ID: 28440203 [TBL] [Abstract][Full Text] [Related]
6. Effect of ZnO nanoparticles on methicillin, vancomycin, linezolid resistance and biofilm formation in Staphylococcus aureus isolates. Abdelraheem WM; Khairy RMM; Zaki AI; Zaki SH Ann Clin Microbiol Antimicrob; 2021 Aug; 20(1):54. PubMed ID: 34419054 [TBL] [Abstract][Full Text] [Related]
7. Formulation and evaluation of injectable dextran sulfate sodium nanoparticles as a potent antibacterial agent. Madkhali OA; Sivagurunathan Moni S; Sultan MH; Bukhary HA; Ghazwani M; Alhakamy NA; Meraya AM; Alshahrani S; Alqahtani SS; Bakkari MA; Alam MI; Elmobark ME Sci Rep; 2021 May; 11(1):9914. PubMed ID: 33972626 [TBL] [Abstract][Full Text] [Related]
8. Antibacterial and biofilm-inhibitory effects of vancomycin-loaded mesoporous silica nanoparticles on methicillin-resistant staphylococcus aureus and gram-negative bacteria. Memar MY; Yekani M; Farajnia S; Ghadiri Moghaddam F; Nabizadeh E; Sharifi S; Maleki Dizaj S Arch Microbiol; 2023 Mar; 205(4):109. PubMed ID: 36884153 [TBL] [Abstract][Full Text] [Related]
9. Synthesis, characterization and investigation of synergistic antibacterial activity and cell viability of silver-sulfur doped graphene quantum dot (Ag@S-GQDs) nanocomposites. Kadian S; Manik G; Das N; Nehra P; Chauhan RP; Roy P J Mater Chem B; 2020 Apr; 8(15):3028-3037. PubMed ID: 32186305 [TBL] [Abstract][Full Text] [Related]
10. Investigating the viability of sulfur polymers for the fabrication of photoactive, antimicrobial, water repellent coatings. Upton RL; Dop RA; Sadler E; Lunt AM; Neill DR; Hasell T; Crick CR J Mater Chem B; 2022 Jun; 10(22):4153-4162. PubMed ID: 35438120 [TBL] [Abstract][Full Text] [Related]
11. Vancomycin-loaded nanoparticles against vancomycin intermediate and methicillin resistant Staphylococcus aureus strains. Simon A; Moreira MLA; Costa IFJB; de Sousa VP; Rodrigues CR; da Rocha E Lima LMT; Sisnande T; do Carmo FA; Leal ICR; Dos Santos KRN; da Silva LCRP; Cabral LM Nanotechnology; 2020 Sep; 31(37):375101. PubMed ID: 32470951 [TBL] [Abstract][Full Text] [Related]
12. Silver nanoparticles as a bioadjuvant of antibiotics against biofilm-mediated infections with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in chronic rhinosinusitis patients. Feizi S; Cooksley CM; Nepal R; Psaltis AJ; Wormald PJ; Vreugde S Pathology; 2022 Jun; 54(4):453-459. PubMed ID: 34844745 [TBL] [Abstract][Full Text] [Related]
13. Improvement of the antibacterial activity of daptomycin-loaded polymeric microparticles by Eudragit RL 100: an assessment by isothermal microcalorimetry. Ferreira IS; Bettencourt A; Bétrisey B; Gonçalves LM; Trampuz A; Almeida AJ Int J Pharm; 2015 May; 485(1-2):171-82. PubMed ID: 25772414 [TBL] [Abstract][Full Text] [Related]
14. Engineered Polymer Nanoparticles with Unprecedented Antimicrobial Efficacy and Therapeutic Indices against Multidrug-Resistant Bacteria and Biofilms. Gupta A; Landis RF; Li CH; Schnurr M; Das R; Lee YW; Yazdani M; Liu Y; Kozlova A; Rotello VM J Am Chem Soc; 2018 Sep; 140(38):12137-12143. PubMed ID: 30169023 [TBL] [Abstract][Full Text] [Related]
15. Development, Characterization, and Antimicrobial Evaluation of Ampicillin-Loaded Nanoparticles Based on Poly(maleic acid- Salamanca CH; Barrera-Ocampo Á; Oñate-Garzón J Molecules; 2022 May; 27(9):. PubMed ID: 35566294 [TBL] [Abstract][Full Text] [Related]
16. [Synthesis of antibiotic loaded polylactic acid nanoparticles and their antibacterial activity against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus]. Herrera MT; Artunduaga JJ; Ortiz CC; Torres RG Biomedica; 2017 Jan; 37(1):11-21. PubMed ID: 28527243 [TBL] [Abstract][Full Text] [Related]
17. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods. Arasoglu T; Derman S; Mansuroglu B Nanotechnology; 2016 Jan; 27(2):025103. PubMed ID: 26629915 [TBL] [Abstract][Full Text] [Related]
18. The Binary Effect on Methicillin-Resistant Staphylococcus aureus of Polymeric Nanovesicles Appended by Proline-Rich Amino Acid Sequences and Inorganic Nanoparticles. Bassous NJ; Webster TJ Small; 2019 May; 15(18):e1804247. PubMed ID: 30957977 [TBL] [Abstract][Full Text] [Related]
19. Characterization of R-pyocin activity against Gram-positive pathogens for the first time with special focus on Staphylococcus aureus. Mohamed AA; Elshawadfy AM; Amin G; Askora A J Appl Microbiol; 2021 Dec; 131(6):2780-2792. PubMed ID: 33977611 [TBL] [Abstract][Full Text] [Related]