These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 37074603)
1. Catalyst-mediated pyrolysis of waste plastics: tuning yield, composition, and nature of pyrolysis oil. Kanattukara BV; Singh G; Sarkar P; Chopra A; Singh D; Mondal S; Kapur GS; Ramakumar SSV Environ Sci Pollut Res Int; 2023 May; 30(24):64994-65010. PubMed ID: 37074603 [TBL] [Abstract][Full Text] [Related]
2. Pyrolysis of polyolefins for increasing the yield of monomers' recovery. Donaj PJ; Kaminsky W; Buzeto F; Yang W Waste Manag; 2012 May; 32(5):840-6. PubMed ID: 22093704 [TBL] [Abstract][Full Text] [Related]
3. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals. Saeaung K; Phusunti N; Phetwarotai W; Assabumrungrat S; Cheirsilp B Waste Manag; 2021 May; 127():101-111. PubMed ID: 33932851 [TBL] [Abstract][Full Text] [Related]
4. Study on thermal co-pyrolysis of jatropha deoiled cake and polyolefins. Rotliwala YC; Parikh PA Waste Manag Res; 2011 Dec; 29(12):1251-61. PubMed ID: 21628346 [TBL] [Abstract][Full Text] [Related]
5. Study on synergistic pyrolysis and kinetics of mixed plastics based on spent fluid-catalytic-cracking catalyst. Wang K; Bian H; Lai Q; Chen Y; Li Z; Hao Y; Yan L; Wang C; Tian X Environ Sci Pollut Res Int; 2023 May; 30(25):66665-66682. PubMed ID: 37099103 [TBL] [Abstract][Full Text] [Related]
6. Production of hydrogen-rich fuel gas from waste plastics using continuous plasma pyrolysis reactor. Bhatt KP; Patel S; Upadhyay DS; Patel RN J Environ Manage; 2024 Apr; 356():120446. PubMed ID: 38484595 [TBL] [Abstract][Full Text] [Related]
7. Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines. Budsaereechai S; Hunt AJ; Ngernyen Y RSC Adv; 2019 Feb; 9(10):5844-5857. PubMed ID: 35515940 [TBL] [Abstract][Full Text] [Related]
8. Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor. Zhang H; Xiao R; Nie J; Jin B; Shao S; Xiao G Bioresour Technol; 2015 Sep; 192():68-74. PubMed ID: 26011693 [TBL] [Abstract][Full Text] [Related]
9. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism. Singh RK; Ruj B; Sadhukhan AK; Gupta P J Environ Manage; 2019 Jun; 239():395-406. PubMed ID: 30928634 [TBL] [Abstract][Full Text] [Related]
10. Thermal pyrolysis of waste versus virgin polyolefin feedstocks: The role of pressure, temperature and waste composition. Abbas-Abadi MS; Kusenberg M; Zayoud A; Roosen M; Vermeire F; Madanikashani S; Kuzmanović M; Parvizi B; Kresovic U; De Meester S; Van Geem KM Waste Manag; 2023 Jun; 165():108-118. PubMed ID: 37119685 [TBL] [Abstract][Full Text] [Related]
11. Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor. Sivagami K; Kumar KV; Tamizhdurai P; Govindarajan D; Kumar M; Nambi I RSC Adv; 2022 Mar; 12(13):7612-7620. PubMed ID: 35424760 [TBL] [Abstract][Full Text] [Related]
12. Exploring the potential of clay catalysts in catalytic pyrolysis of mixed plastic waste for fuel and energy recovery. Cai W; Kumar R; Zheng Y; Zhu Z; Wong JWC; Zhao J Heliyon; 2023 Dec; 9(12):e23140. PubMed ID: 38076152 [TBL] [Abstract][Full Text] [Related]
13. Fe-POM/attapulgite composite materials: Efficient catalysts for plastic pyrolysis. Attique S; Batool M; Goerke O; Abbas G; Saeed FA; Din MI; Jalees I; Irfan A; Gregory DH; Tufail Shah A Waste Manag Res; 2022 Sep; 40(9):1433-1439. PubMed ID: 35243944 [TBL] [Abstract][Full Text] [Related]
14. Pyrolytic conversion of waste plastics to energy products: A review on yields, properties, and production costs. Faisal F; Rasul MG; Jahirul MI; Schaller D Sci Total Environ; 2023 Feb; 861():160721. PubMed ID: 36496020 [TBL] [Abstract][Full Text] [Related]
15. Fuel production by cracking of polyolefins pyrolysis waxes under fluid catalytic cracking (FCC) operating conditions. Rodríguez E; Gutiérrez A; Palos R; Vela FJ; Arandes JM; Bilbao J Waste Manag; 2019 Jun; 93():162-172. PubMed ID: 31235053 [TBL] [Abstract][Full Text] [Related]
16. Thermal and catalytic pyrolysis of a mixture of plastics from small waste electrical and electronic equipment (WEEE). Santella C; Cafiero L; De Angelis D; La Marca F; Tuffi R; Vecchio Ciprioti S Waste Manag; 2016 Aug; 54():143-52. PubMed ID: 27184448 [TBL] [Abstract][Full Text] [Related]
17. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene. Solak A; Rutkowski P Waste Manag; 2014 Feb; 34(2):504-12. PubMed ID: 24252369 [TBL] [Abstract][Full Text] [Related]
18. The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel. Das P; Tiwari P Waste Manag; 2018 Sep; 79():615-624. PubMed ID: 30343794 [TBL] [Abstract][Full Text] [Related]
19. Microwave pyrolysis of polypropylene, and high-density polyethylene, and catalytic gasification of waste coffee pods to hydrogen-rich gas. de Sousa Felix M; Hagare D; Tahmasebi A; Sathasivan A; Arora M Waste Manag; 2024 Oct; 187():306-316. PubMed ID: 39089146 [TBL] [Abstract][Full Text] [Related]
20. Catalytic pyrolysis of mechanically non-recyclable waste plastics mixture: Kinetics and pyrolysis in laboratory-scale reactor. Kremer I; Tomić T; Katančić Z; Erceg M; Papuga S; Vuković JP; Schneider DR J Environ Manage; 2021 Oct; 296():113145. PubMed ID: 34271358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]