These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 3707471)

  • 1. Plasma viscosity elevations with simulated weightlessness.
    Martin DG; Convertino VA; Goldwater D; Ferguson EW; Schoomaker EB
    Aviat Space Environ Med; 1986 May; 57(5):426-31. PubMed ID: 3707471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response to muscular exercise following repeated simulated weightlessness.
    Convertino VA; Kirby CR; Karst GM; Goldwater DJ
    Aviat Space Environ Med; 1985 Jun; 56(6):540-6. PubMed ID: 4015565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic power and the main determinants of blood rheology: is there a relationship?
    El-Sayed MS; Ali N; Al-Bayatti M
    Blood Coagul Fibrinolysis; 2009 Dec; 20(8):679-85. PubMed ID: 19786866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Logistic risk model for the unique effects of inherent aerobic capacity on +Gz tolerance before and after simulated weightlessness.
    Ludwig DA; Convertino VA; Goldwater DJ; Sandler H
    Aviat Space Environ Med; 1987 Nov; 58(11):1057-61. PubMed ID: 3689269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on blood viscosity during the menstrual cycle and in the postmenopausal period in healthy women.
    Larsson H; Persson S; Hedner P; Odeberg H; Gustafson A
    Acta Obstet Gynecol Scand; 1989; 68(6):483-6. PubMed ID: 2520801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adverse effects of alcohol ingestion post exercise on blood rheological variables during recovery.
    El-Sayed MS
    Clin Hemorheol Microcirc; 2001; 24(4):227-32. PubMed ID: 11564911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of the venous hemodynamics of the leg under simulated weightlessness: effects of physical exercise as countermeasure.
    Louisy F; Berry P; Marini JF; Güell A; Guezennec CY
    Aviat Space Environ Med; 1995 Jun; 66(6):542-9. PubMed ID: 7646404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma colloid osmotic pressure increases in humans during simulated microgravity.
    Hsieh ST; Ballard RE; Murthy G; Hargens AR; Convertino VA
    Aviat Space Environ Med; 1998 Jan; 69(1):23-6. PubMed ID: 9490611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of simulated weightlessness on exercise-induced anaerobic threshold.
    Convertino VA; Karst GM; Kirby CR; Goldwater DJ
    Aviat Space Environ Med; 1986 Apr; 57(4):325-31. PubMed ID: 3964161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrolyte changes in plasma and urine of athletes during acute and rigorous bed rest and ambulatory conditions.
    Zorbas YG; Kakurin VJ; Afonin VB; Kuznetsov NA
    Biol Trace Elem Res; 2001 Jan; 79(1):49-65. PubMed ID: 11318237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrinogen is negatively correlated with aerobic working capacity in football players.
    Bouix D; Peyreigne C; Raynaud E; Benhaddad A; Mercier J; Bringer AJ; Préfaut C; Brun JF
    Clin Hemorheol Microcirc; 1998 Nov; 19(3):219-27. PubMed ID: 9874357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of red blood cell disaggregability during submaximal exercise: relationship with fibrinogen levels.
    Varlet-Marie E; Gaudard A; Monnier JF; Micallef JP; Mercier J; Bressolle F; Brun JF
    Clin Hemorheol Microcirc; 2003; 28(3):139-49. PubMed ID: 12775896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Body volume changes during simulated weightlessness: an overview.
    Montgomery LD
    Aviat Space Environ Med; 1987 Sep; 58(9 Pt 2):A80-5. PubMed ID: 3675510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of physiological salt water injection after 20 days of head down tilt bed rest on maximal aerobic power in young males.
    Suzuki Y; Takenaka K; Kobayashi H; Haruna Y; Kawakubo K; Gunji A
    J Gravit Physiol; 1998 Jul; 5(1):P33-4. PubMed ID: 11542354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal stone risk in a simulated microgravity environment: impact of treadmill exercise with lower body negative pressure.
    Monga M; Macias B; Groppo E; Kostelec M; Hargens A
    J Urol; 2006 Jul; 176(1):127-31. PubMed ID: 16753386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemorheological investigations in patients with polycystic kidney disease.
    Shand BI
    Clin Hemorheol Microcirc; 2002; 27(1):13-6. PubMed ID: 12237486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in body fluid compartments during a 28-day bed rest.
    Fortney SM; Hyatt KH; Davis JE; Vogel JM
    Aviat Space Environ Med; 1991 Feb; 62(2):97-104. PubMed ID: 2001223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Changes in several indicators of blood rheology in experiments simulating weightlessness].
    Ivanov AP; Goncharov IB; Davydkin AF; Lavrov VI
    Kosm Biol Aviakosm Med; 1983; 17(6):25-30. PubMed ID: 6656182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bed rest immobilization with various oral sodium supply: plasma hormones and body fluids.
    Hinghofer-Szalkay HG; László Z; Jezova D; Rössler A; Haditsch B; Pilz K; Passath H; Sharfetter H
    Endocr Regul; 2002 Nov; 36(4):151-9. PubMed ID: 12466015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemorheological correlates of fitness and unfitness in athletes: moving beyond the apparent "paradox of hematocrit"?
    Gaudard A; Varlet-Marie E; Bressolle F; Mercier J; Brun JF
    Clin Hemorheol Microcirc; 2003; 28(3):161-73. PubMed ID: 12775898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.