These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37075256)

  • 1. Are Neural Network Potentials Trained on Liquid States Transferable to Crystal Nucleation? A Test on Ice Nucleation in the mW Water Model.
    Guidarelli Mattioli F; Sciortino F; Russo J
    J Phys Chem B; 2023 May; 127(17):3894-3901. PubMed ID: 37075256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the reliability of machine learned potentials for modeling inhomogeneous liquids.
    Fazel K; Karimitari N; Shah T; Sutton C; Sundararaman R
    J Comput Chem; 2024 Aug; 45(21):1821-1828. PubMed ID: 38662330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neural network potential with self-trained atomic fingerprints: A test with the mW water potential.
    Guidarelli Mattioli F; Sciortino F; Russo J
    J Chem Phys; 2023 Mar; 158(10):104501. PubMed ID: 36922151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon Liquid Structure and Crystal Nucleation from Ab Initio Deep Metadynamics.
    Bonati L; Parrinello M
    Phys Rev Lett; 2018 Dec; 121(26):265701. PubMed ID: 30636123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-ordering of interfacial water in the pathway of heterogeneous ice nucleation does not lead to a two-step crystallization mechanism.
    Lupi L; Peters B; Molinero V
    J Chem Phys; 2016 Dec; 145(21):211910. PubMed ID: 28799353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homogeneous ice nucleation rates for mW and TIP4P/ICE models through Lattice Mold calculations.
    Sanchez-Burgos I; Tejedor AR; Vega C; Conde MM; Sanz E; Ramirez J; Espinosa JR
    J Chem Phys; 2022 Sep; 157(9):094503. PubMed ID: 36075712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homogeneous ice nucleation in an ab initio machine-learning model of water.
    Piaggi PM; Weis J; Panagiotopoulos AZ; Debenedetti PG; Car R
    Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2207294119. PubMed ID: 35939708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A physically constrained classical description of the homogeneous nucleation of ice in water.
    Koop T; Murray BJ
    J Chem Phys; 2016 Dec; 145(21):211915. PubMed ID: 28799369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of stacking disorder in ice nucleation.
    Lupi L; Hudait A; Peters B; Grünwald M; Gotchy Mullen R; Nguyen AH; Molinero V
    Nature; 2017 Nov; 551(7679):218-222. PubMed ID: 29120424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface.
    He X; Shen Y; Hung FR; Santiso EE
    J Chem Phys; 2016 Dec; 145(21):211919. PubMed ID: 28799378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanosecond solvation dynamics of the hematite/liquid water interface at hybrid DFT accuracy using committee neural network potentials.
    Schienbein P; Blumberger J
    Phys Chem Chem Phys; 2022 Jun; 24(25):15365-15375. PubMed ID: 35703465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free energy landscapes for homogeneous nucleation of ice for a monatomic water model.
    Reinhardt A; Doye JP
    J Chem Phys; 2012 Feb; 136(5):054501. PubMed ID: 22320745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning interatomic potentials for aluminium: application to solidification phenomena.
    Jakse N; Sandberg J; Granz LF; Saliou A; Jarry P; Devijver E; Voigtmann T; Horbach J; Meyer A
    J Phys Condens Matter; 2022 Nov; 51(3):. PubMed ID: 36301702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the persistence of chalcogen bonds in solution with neural network potentials.
    Jurásková V; Célerse F; Laplaza R; Corminboeuf C
    J Chem Phys; 2022 Apr; 156(15):154112. PubMed ID: 35459295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quality of uncertainty estimates from neural network potential ensembles.
    Kahle L; Zipoli F
    Phys Rev E; 2022 Jan; 105(1-2):015311. PubMed ID: 35193257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate prediction of ice nucleation from room temperature water.
    Davies MB; Fitzner M; Michaelides A
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2205347119. PubMed ID: 35878028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energy perturbation study of water dimer dissociation kinetics.
    Ming Y; Lai G; Tong C; Wood RH; Doren DJ
    J Chem Phys; 2004 Jul; 121(2):773-7. PubMed ID: 15260604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A critical comparison of neural network potentials for molecular reaction dynamics with exact permutation symmetry.
    Li J; Song K; Behler J
    Phys Chem Chem Phys; 2019 May; 21(19):9672-9682. PubMed ID: 30672927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homogeneous water vapor condensation with a deep neural network potential model.
    Zhong S; Shi Z; Zhang B; Wen Z; Chen L
    J Chem Phys; 2024 Mar; 160(12):. PubMed ID: 38516980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of optoelectronic properties of Cu
    Selvaratnam B; Koodali RT; Miró P
    Phys Chem Chem Phys; 2020 Jul; 22(26):14910-14917. PubMed ID: 32584353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.