These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 3707539)

  • 21. Compartmentation between glycolysis and gluconeogenesis in rat liver.
    Threlfall CJ; Heath DF
    Biochem J; 1968 Nov; 110(2):303-12. PubMed ID: 5726210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Glycolysis in the liver under postabsorptive conditions].
    Frunder H
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):414-7. PubMed ID: 4176837
    [No Abstract]   [Full Text] [Related]  

  • 23. Quantitative analysis of intermediary metabolism in rat hepatocytes incubated in the presence and absence of ethanol with a substrate mixture including ketoleucine.
    Baranyai JM; Blum JJ
    Biochem J; 1989 Feb; 258(1):121-40. PubMed ID: 2930501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fructose 2,6-bisphosphate and 6-phosphofructo-2-kinase during liver regeneration.
    Rosa JL; Ventura F; Carreras J; Bartrons R
    Biochem J; 1990 Sep; 270(3):645-9. PubMed ID: 2173548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Repression, by fructose, of the biosynthesis of 6-phosphofructokinase and phosphoglyceromutase in Acetobacter xylinum].
    Prieur P
    Bull Soc Chim Biol (Paris); 1969 Jan; 50(10):1769-82. PubMed ID: 4240519
    [No Abstract]   [Full Text] [Related]  

  • 26. Metabolic effects of D-glyceraldehyde in isolated hepatocytes.
    Maswoswe SM; Daneshmand F; Davies DR
    Biochem J; 1986 Dec; 240(3):771-6. PubMed ID: 3827866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic control of hepatic gluconeogenesis during exercise.
    Dohm GL; Newsholme EA
    Biochem J; 1983 Jun; 212(3):633-9. PubMed ID: 6224482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mode of action of alpha-chlorohydrin as a male anti-fertility agent. Inhibition of the metabolism of ram spermatozoa by alpha-chlorohydrin and location of block in glycolysis.
    Brown-Woodman PD; Mohri H; Mohri T; Suter D; White IG
    Biochem J; 1978 Jan; 170(1):23-37. PubMed ID: 629780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The mechanism by which ethanol decreases the concentration of fructose 2,6-bisphosphate in the liver.
    Van Schaftingen E; Bartrons R; Hers HG
    Biochem J; 1984 Sep; 222(2):511-8. PubMed ID: 6089771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study of the flux and transition time control coefficient profiles in a metabolic system in vitro and the effect of an external stimulator.
    Torres NV; Souto R; Meléndez-Hevia E
    Biochem J; 1989 Jun; 260(3):763-9. PubMed ID: 2764903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dihydroxyacetone phosphate. Its structure and reactivity with -glycerophosphate dehydrogenase, aldolase and triose phosphate isomerase and some possible metabolic implications.
    Reynolds SJ; Yates DW; Pogson CI
    Biochem J; 1971 Apr; 122(3):285-97. PubMed ID: 4330197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Substrate-dependent utilization of the glycerol 3-phosphate or malate/aspartate redox shuttles by Ehrlich ascites cells.
    Grivell AR; Korpelainen EI; Williams CJ; Berry MN
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):665-71. PubMed ID: 7654209
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pathways of reducing equivalents in hepatocytes from rats. Estimation of cytosolic fluxes by means of 3H-labelled substrates for either A- or B-specific dehydrogenases.
    Vind C; Hunding A; Grunnet N
    Biochem J; 1987 May; 243(3):625-30. PubMed ID: 3663093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase.
    Marín-Hernández A; Rodríguez-Enríquez S; Vital-González PA; Flores-Rodríguez FL; Macías-Silva M; Sosa-Garrocho M; Moreno-Sánchez R
    FEBS J; 2006 May; 273(9):1975-88. PubMed ID: 16640561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transition time control analysis of a glycolytic system under different glucose concentrations. Control of transition time versus control of flux.
    Torres NV; Meléndez-Hevia E
    Mol Cell Biochem; 1992 Jun; 112(2):109-15. PubMed ID: 1386406
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The dissimilation of glucose and gluconate by Acetobacter xylinum. 1. The origin and the fate of triose phosphate.
    White GA; Wang CH
    Biochem J; 1964 Feb; 90(2):408-23. PubMed ID: 4220768
    [No Abstract]   [Full Text] [Related]  

  • 38. The pentose phosphate pathway of glucose metabolism. Influence of a growth-hormone-secreting pituitary tumour on the oxidative and non-oxidative reactions of the cycle in liver.
    Gumaa KA; MacLeod RM; McLean P
    Biochem J; 1969 Jun; 113(1):215-20. PubMed ID: 5806393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Glucose metabolism in Clostridium sporogenes and Clostridium sticklandii bacteria].
    Golovchenko NP; Belokopytov BF; Akimenko VK
    Mikrobiologiia; 1983; 52(6):869-74. PubMed ID: 6230511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of the fructose 6-phosphate/fructose 2,6-bisphosphate cycle by sn-glycerol 3-phosphate.
    Frenzel J; Schellenberger W; Eschrich K; Hofmann E
    Biomed Biochim Acta; 1988; 47(6):461-70. PubMed ID: 2853625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.