These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 3707539)

  • 41. [59] Site-specific reagents for triose phosphate isomerase and their potential applicability to aldolase and glycerol phosphate dehydrogenase.
    Hartman FC
    Methods Enzymol; 1972; 25():661-71. PubMed ID: 23014448
    [No Abstract]   [Full Text] [Related]  

  • 42. Glyceroneogenesis and the supply of glycerol-3-phosphate for glyceride-glycerol synthesis in liver slices of fasted and diabetic rats.
    Martins-Santos ME; Chaves VE; Frasson D; Boschini RP; Garófalo MA; Kettelhut Ido C; Migliorini RH
    Am J Physiol Endocrinol Metab; 2007 Nov; 293(5):E1352-7. PubMed ID: 17726141
    [TBL] [Abstract][Full Text] [Related]  

  • 43. EVIDENCE FOR EXTRACELLULAR ENZYMIC ACTIVITY OF THE ISOLATED PERFUSED RAT HEART.
    WILLIAMSON JR; DIPIETRO DL
    Biochem J; 1965 Apr; 95(1):226-32. PubMed ID: 14333561
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Carbohydrate metabolism in the liver of fetuses and adult pigs].
    Sologub LI; Kusen' SI; Bilevich VO
    Ukr Biokhim Zh; 1969; 41(5):580-3. PubMed ID: 4312827
    [No Abstract]   [Full Text] [Related]  

  • 45. A new level of regulation in gluconeogenesis: metabolic state modulates the intracellular localization of aldolase B and its interaction with liver fructose-1,6-bisphosphatase.
    Droppelmann CA; Sáez DE; Asenjo JL; Yáñez AJ; García-Rocha M; Concha II; Grez M; Guinovart JJ; Slebe JC
    Biochem J; 2015 Dec; 472(2):225-37. PubMed ID: 26417114
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enzymatic assay of fructose-1,6-diphosphate for the measurement of its utilization by tissues.
    Galzigna L; Manani G; Giron GP; Burlina A
    Int J Vitam Nutr Res; 1977; 47(1):88-91. PubMed ID: 844954
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanism of liver glycogen repletion in vivo by nuclear magnetic resonance spectroscopy.
    Shulman GI; Rothman DL; Smith D; Johnson CM; Blair JB; Shulman RG; DeFronzo RA
    J Clin Invest; 1985 Sep; 76(3):1229-36. PubMed ID: 4044833
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A 1H n.m.r. study of isotope exchange catalysed by glycolytic enzymes in the human erythrocyte.
    Brindle KM; Brown FF; Campbell ID; Foxall DL; Simpson RJ
    Biochem J; 1982 Mar; 202(3):589-602. PubMed ID: 7092833
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Catalysis of pentose phosphate pathway reactions by cytoplasmic fractions from muscle, uterus and liver of the rat, and the presence of a reduced nicotinamide-adenine dinucleotide phosphate-triose phosphate oxidoreductase in rat muscle.
    Wood T
    Biochem J; 1974 Jan; 138(1):71-6. PubMed ID: 4152128
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Control of liver 6-phosphofructokinase by fructose 2,6-bisphosphate and other effectors.
    Van Schaftingen E; Jett MF; Hue L; Hers HG
    Proc Natl Acad Sci U S A; 1981 Jun; 78(6):3483-6. PubMed ID: 6455662
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glucagon inhibits triacylglycerol synthesis in isolated hepatocytes by lowering their glycerol 3-phosphate content.
    Declercq PE; Debeer LJ; Mannaerts GP
    Biochem J; 1982 Mar; 202(3):803-6. PubMed ID: 7092846
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of fructose feeding on the activity of enzymes of glycolysis, gluconeogenesis, and the pentose phosphate shunt in the liver and jejunal mucosa of rats.
    Bode C; Dürr HK; Bode JC
    Horm Metab Res; 1981 Jul; 13(7):379-83. PubMed ID: 7274991
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Glucose metabolism in the superovulated rat ovary in vitro. Effects of luteinizing hormone and the role of glucose metabolism in steroidogenesis.
    Flint AP; Denton RM
    Biochem J; 1969 Apr; 112(2):243-54. PubMed ID: 4240707
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detailed protocol and critical view for the analysis of control in metabolic systems by shortening and enzyme titration.
    Torres NV; Meléndez-Hevia E
    Mol Cell Biochem; 1991 Feb; 101(1):1-10. PubMed ID: 2011115
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Flux prediction using artificial neural network (ANN) for the upper part of glycolysis.
    Ajjolli Nagaraja A; Fontaine N; Delsaut M; Charton P; Damour C; Offmann B; Grondin-Perez B; Cadet F
    PLoS One; 2019; 14(5):e0216178. PubMed ID: 31067238
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolic control and its analysis. Extensions to the theory and matrix method.
    Sauro HM; Small JR; Fell DA
    Eur J Biochem; 1987 May; 165(1):215-21. PubMed ID: 3569295
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The relation between the blood-level of a substrate and enzyme kinetics studied with glycerol in the rat.
    Ackermann RH; Bässler KH; Wagner K
    Hoppe Seylers Z Physiol Chem; 1974 May; 355(5):576-82. PubMed ID: 4373382
    [No Abstract]   [Full Text] [Related]  

  • 58. Control analysis of mammalian serine biosynthesis. Feedback inhibition on the final step.
    Fell DA; Snell K
    Biochem J; 1988 Nov; 256(1):97-101. PubMed ID: 2851987
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Application of electrical analogues for control analysis of simple metabolic pathways.
    Sen AK
    Biochem J; 1990 Nov; 272(1):65-70. PubMed ID: 2264838
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Moiety-conserved cycles and metabolic control analysis: problems in sequestration and metabolic channelling.
    Sauro HM
    Biosystems; 1994; 33(1):55-67. PubMed ID: 7803701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.