These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37075558)

  • 21. The rise and fall of plankton: long-term changes in the vertical distribution of algae and grazers in Lake Baikal, Siberia.
    Hampton SE; Gray DK; Izmest'eva LR; Moore MV; Ozersky T
    PLoS One; 2014; 9(2):e88920. PubMed ID: 24586441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Seasonal Patterns of Phytoplankton Taxon Richness in Lakes: Effects of Temperature, Turnover and Abundance.
    Maberly SC; Chao A; Finlay BJ
    Protist; 2022 Dec; 173(6):125925. PubMed ID: 36343516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Phytoplankton pigment patterns and community structure in the Yangtze Estuary and its adjacent areas].
    Lai JX; Yu ZM; Song XX; Han XT; Cao XH; Yuan YQ
    Huan Jing Ke Xue; 2013 Sep; 34(9):3405-15. PubMed ID: 24288983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phytoplankton functional groups in a monomictic reservoir: seasonal succession, ecological preferences, and relationships with environmental variables.
    Varol M
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20439-20453. PubMed ID: 31102217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biophysical interactions control the size and abundance of large phytoplankton chains at the Ushant tidal front.
    Landeira JM; Ferron B; Lunven M; Morin P; Marié L; Sourisseau M
    PLoS One; 2014; 9(2):e90507. PubMed ID: 24587384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effects of simulated elevation of atmospheric CO2 concentration on the physiological features of spring phytoplankton in Taihu Lake].
    Zhao XH; Tang LS; Shi XL; Yang Z; Kong FX
    Huan Jing Ke Xue; 2013 Jun; 34(6):2126-33. PubMed ID: 23947023
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensitivity of phytoplankton to climatic factors in a large shallow lake revealed by column-integrated algal biomass from long-term satellite observations.
    Zhang Y; Hu M; Shi K; Zhang M; Han T; Lai L; Zhan P
    Water Res; 2021 Dec; 207():117786. PubMed ID: 34731665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The changing characteristics of phytoplankton community and biomass in subtropical shallow lakes: Coupling effects of land use patterns and lake morphology.
    Peng X; Zhang L; Li Y; Lin Q; He C; Huang S; Li H; Zhang X; Liu B; Ge F; Zhou Q; Zhang Y; Wu Z
    Water Res; 2021 Jul; 200():117235. PubMed ID: 34034101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phytoplankton community and chlorophyll a as trophic state indices of Lake Skadar (Montenegro, Balkan).
    Rakocevic-Nedovic J; Hollert H
    Environ Sci Pollut Res Int; 2005; 12(3):146-52. PubMed ID: 15986998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity of plankton indices to lake trophic conditions.
    Ochocka A; Pasztaleniec A
    Environ Monit Assess; 2016 Nov; 188(11):622. PubMed ID: 27752916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variability of chlorophyll and the influence factors during winter in seasonally ice-covered lakes.
    Wen Z; Song K; Shang Y; Lyu L; Yang Q; Fang C; Du J; Li S; Liu G; Zhang B; Cheng S
    J Environ Manage; 2020 Dec; 276():111338. PubMed ID: 32937234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chlorophyll a predictability and relative importance of factors governing lake phytoplankton at different timescales.
    Liu X; Feng J; Wang Y
    Sci Total Environ; 2019 Jan; 648():472-480. PubMed ID: 30121046
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Does turbidity induced by Carassius carassius limit phytoplankton growth? A mesocosm study.
    He H; Hu E; Yu J; Luo X; Li K; Jeppesen E; Liu Z
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):5012-5018. PubMed ID: 28000069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Winds and the distribution of nearshore phytoplankton in a stratified lake.
    Cyr H
    Water Res; 2017 Oct; 122():114-127. PubMed ID: 28595122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environmental assessment of drainage water impacts on water quality and eutrophication level of Lake Idku, Egypt.
    Ali EM; Khairy HM
    Environ Pollut; 2016 Sep; 216():437-449. PubMed ID: 27321880
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stochastic simulation of phytoplankton biomass using eighteen years of daily data - predictability of phytoplankton growth in a large, shallow lake.
    Istvánovics V; Honti M
    Sci Total Environ; 2021 Apr; 764():143636. PubMed ID: 33401043
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Viral and bacterioplankton dynamics in two lakes with different humic contents.
    Vrede K; Stensdotter U; Lindström ES
    Microb Ecol; 2003 Nov; 46(4):406-15. PubMed ID: 14502419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of nutrients, wind speed, and rainfall in determining the composition of the algal community of shallow lakes in the Taoge water system, upstream from Lake Taihu, China.
    Chen Q; Hu W; Shen L; Shen W; Zhang X
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):16195-16209. PubMed ID: 36180803
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake.
    Dörnhöfer K; Klinger P; Heege T; Oppelt N
    Sci Total Environ; 2018 Jan; 612():1200-1214. PubMed ID: 28892864
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bimodality and alternative equilibria do not help explain long-term patterns in shallow lake chlorophyll-a.
    Davidson TA; Sayer CD; Jeppesen E; Søndergaard M; Lauridsen TL; Johansson LS; Baker A; Graeber D
    Nat Commun; 2023 Jan; 14(1):398. PubMed ID: 36693848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.