These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37075814)

  • 21. Transcriptomic characterization of a synergistic genetic interaction during carpel margin meristem development in Arabidopsis thaliana.
    Wynn AN; Rueschhoff EE; Franks RG
    PLoS One; 2011; 6(10):e26231. PubMed ID: 22031826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptome analysis of gynoecium morphogenesis uncovers the chronology of gene regulatory network activity.
    Kivivirta KI; Herbert D; Roessner C; de Folter S; Marsch-Martinez N; Becker A
    Plant Physiol; 2021 Apr; 185(3):1076-1090. PubMed ID: 33793890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seed Plant-Specific Gene Lineages Involved in Carpel Development.
    Pfannebecker KC; Lange M; Rupp O; Becker A
    Mol Biol Evol; 2017 Apr; 34(4):925-942. PubMed ID: 28087776
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Auxin and cytokinin act during gynoecial patterning and the development of ovules from the meristematic medial domain.
    Sehra B; Franks RG
    Wiley Interdiscip Rev Dev Biol; 2015; 4(6):555-71. PubMed ID: 25951007
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developmental cartography: coordination via hormonal and genetic interactions during gynoecium formation.
    Deb J; Bland HM; Østergaard L
    Curr Opin Plant Biol; 2018 Feb; 41():54-60. PubMed ID: 28961459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptomic Signature of the SHATTERPROOF2 Expression Domain Reveals the Meristematic Nature of Arabidopsis Gynoecial Medial Domain.
    Villarino GH; Hu Q; Manrique S; Flores-Vergara M; Sehra B; Robles L; Brumos J; Stepanova AN; Colombo L; Sundberg E; Heber S; Franks RG
    Plant Physiol; 2016 May; 171(1):42-61. PubMed ID: 26983993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hormonal control of the development of the gynoecium.
    Marsch-Martínez N; de Folter S
    Curr Opin Plant Biol; 2016 Feb; 29():104-14. PubMed ID: 26799132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The protein-protein interaction landscape of transcription factors during gynoecium development in Arabidopsis.
    Herrera-Ubaldo H; Campos SE; López-Gómez P; Luna-García V; Zúñiga-Mayo VM; Armas-Caballero GE; González-Aguilera KL; DeLuna A; Marsch-Martínez N; Espinosa-Soto C; de Folter S
    Mol Plant; 2023 Jan; 16(1):260-278. PubMed ID: 36088536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Female reproductive organ formation: A multitasking endeavor.
    Simonini S; Østergaard L
    Curr Top Dev Biol; 2019; 131():337-371. PubMed ID: 30612622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions of CUP-SHAPED COTYLEDON and SPATULA genes control carpel margin development in Arabidopsis thaliana.
    Nahar MA; Ishida T; Smyth DR; Tasaka M; Aida M
    Plant Cell Physiol; 2012 Jun; 53(6):1134-43. PubMed ID: 22514090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development.
    Kamiuchi Y; Yamamoto K; Furutani M; Tasaka M; Aida M
    Front Plant Sci; 2014; 5():165. PubMed ID: 24817871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discovery of gynoecium color polymorphism in an aquatic plant.
    Huang SQ; Tang XX
    J Integr Plant Biol; 2008 Sep; 50(9):1178-82. PubMed ID: 18924283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring Cell Wall Composition and Modifications During the Development of the Gynoecium Medial Domain in
    Herrera-Ubaldo H; de Folter S
    Front Plant Sci; 2018; 9():454. PubMed ID: 29706978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gradual vs. abrupt reduction of carpels in syncarpous gynoecia: A case study from Polyscias subg. Arthrophyllum (Araliaceae: Apiales).
    Karpunina PV; Oskolski AA; Nuraliev MS; Lowry PP; Degtjareva GV; Samigullin TH; Valiejo-Roman CM; Sokoloff DD
    Am J Bot; 2016 Dec; 103(12):2028-2057. PubMed ID: 27919924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The class II HD-ZIP JAIBA gene is involved in meristematic activity and important for gynoecium and fruit development in Arabidopsis.
    Zúñiga-Mayo VM; Marsch-Martínez N; de Folter S
    Plant Signal Behav; 2012 Nov; 7(11):1501-3. PubMed ID: 22951401
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anatomy and RNA-Seq reveal important gene pathways regulating sex differentiation in a functionally Androdioecious tree, Tapiscia sinensis.
    Xin GL; Liu JQ; Liu J; Ren XL; Du XM; Liu WZ
    BMC Plant Biol; 2019 Dec; 19(1):554. PubMed ID: 31842763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene networks controlling the initiation of flower development.
    Wellmer F; Riechmann JL
    Trends Genet; 2010 Dec; 26(12):519-27. PubMed ID: 20947199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular Network for Regulation of Ovule Number in Plants.
    Qadir M; Wang X; Shah SRU; Zhou XR; Shi J; Wang H
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development.
    Müller BM; Saedler H; Zachgo S
    Plant J; 2001 Oct; 28(2):169-79. PubMed ID: 11722760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An evolutionary perspective on the regulation of carpel development.
    Scutt CP; Vinauger-Douard M; Fourquin C; Finet C; Dumas C
    J Exp Bot; 2006; 57(10):2143-52. PubMed ID: 16720607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.