These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37075814)

  • 41. Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development.
    Flanagan CA; Hu Y; Ma H
    Plant J; 1996 Aug; 10(2):343-53. PubMed ID: 8771788
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fine-tuning of auxin homeostasis governs the transition from floral stem cell maintenance to gynoecium formation.
    Yamaguchi N; Huang J; Xu Y; Tanoi K; Ito T
    Nat Commun; 2017 Oct; 8(1):1125. PubMed ID: 29066759
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synergistic action of GCN5 and CLAVATA1 in the regulation of gynoecium development in Arabidopsis thaliana.
    Poulios S; Vlachonasios KE
    New Phytol; 2018 Oct; 220(2):593-608. PubMed ID: 30027613
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Floral structure of Cardiopteris (Cardiopteridaceae) with special emphasis on the gynoecium: systematic and evolutionary implications.
    Tobe H
    J Plant Res; 2012 May; 125(3):361-9. PubMed ID: 21904876
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evolutionary history of the grass gynoecium.
    Sokoloff DD; Fomichev CI; Rudall PJ; Macfarlane TD; Remizowa MV
    J Exp Bot; 2022 Aug; 73(14):4637-4661. PubMed ID: 35512454
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Then There Were Plenty-Ring Meristems Giving Rise to Many Stamen Whorls.
    Kong D; Becker A
    Plants (Basel); 2021 Jun; 10(6):. PubMed ID: 34205172
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evolution of genes associated with gynoecium patterning and fruit development in Solanaceae.
    Ortiz-Ramírez CI; Plata-Arboleda S; Pabón-Mora N
    Ann Bot; 2018 May; 121(6):1211-1230. PubMed ID: 29471367
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hormones talking: does hormonal cross-talk shape the Arabidopsis gynoecium?
    Marsch-Martínez N; Reyes-Olalde JI; Ramos-Cruz D; Lozano-Sotomayor P; Zúñiga-Mayo VM; de Folter S
    Plant Signal Behav; 2012 Dec; 7(12):1698-701. PubMed ID: 23072997
    [TBL] [Abstract][Full Text] [Related]  

  • 49. False paracarpy in Seemannaralia (Araliaceae): from bilocular ovary to unilocular fruit.
    Oskolski AA; Sokoloff DD; Van Wyk BE
    Ann Bot; 2010 Jul; 106(1):29-36. PubMed ID: 20462851
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Arabidopsis HECATE genes function in phytohormone control during gynoecium development.
    Schuster C; Gaillochet C; Lohmann JU
    Development; 2015 Oct; 142(19):3343-50. PubMed ID: 26293302
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The CRABS CLAW ortholog from California poppy (Eschscholzia californica, Papaveraceae), EcCRC, is involved in floral meristem termination, gynoecium differentiation and ovule initiation.
    Orashakova S; Lange M; Lange S; Wege S; Becker A
    Plant J; 2009 May; 58(4):682-93. PubMed ID: 19175766
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Peptide Pair Coordinates Regular Ovule Initiation Patterns with Seed Number and Fruit Size.
    Kawamoto N; Del Carpio DP; Hofmann A; Mizuta Y; Kurihara D; Higashiyama T; Uchida N; Torii KU; Colombo L; Groth G; Simon R
    Curr Biol; 2020 Nov; 30(22):4352-4361.e4. PubMed ID: 32916111
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ring the BELL and tie the KNOX: roles for TALEs in gynoecium development.
    Arnaud N; Pautot V
    Front Plant Sci; 2014; 5():93. PubMed ID: 24688486
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of auxin in style development and apical-basal patterning of the Arabidopsis thaliana gynoecium.
    Ståldal V; Sundberg E
    Plant Signal Behav; 2009 Feb; 4(2):83-5. PubMed ID: 19649177
    [TBL] [Abstract][Full Text] [Related]  

  • 55. ETTIN patterns the Arabidopsis floral meristem and reproductive organs.
    Sessions A; Nemhauser JL; McColl A; Roe JL; Feldmann KA; Zambryski PC
    Development; 1997 Nov; 124(22):4481-91. PubMed ID: 9409666
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel functional roles for PERIANTHIA and SEUSS during floral organ identity specification, floral meristem termination, and gynoecial development.
    Wynn AN; Seaman AA; Jones AL; Franks RG
    Front Plant Sci; 2014; 5():130. PubMed ID: 24778638
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transcriptome analysis reveals rice MADS13 as an important repressor of the carpel development pathway in ovules.
    Osnato M; Lacchini E; Pilatone A; Dreni L; Grioni A; Chiara M; Horner D; Pelaz S; Kater MM
    J Exp Bot; 2021 Feb; 72(2):398-414. PubMed ID: 33035313
    [TBL] [Abstract][Full Text] [Related]  

  • 58. ULTRAPETALA1 and LEAFY pathways function independently in specifying identity and determinacy at the Arabidopsis floral meristem.
    Engelhorn J; Moreau F; Fletcher JC; Carles CC
    Ann Bot; 2014 Nov; 114(7):1497-505. PubMed ID: 25288633
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development.
    Tang M; Tao YB; Fu Q; Song Y; Niu L; Xu ZF
    Sci Rep; 2016 Nov; 6():37306. PubMed ID: 27869146
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The identification of candidate genes for a reverse genetic analysis of development and function in the Arabidopsis gynoecium.
    Scutt CP; Vinauger-Douard M; Fourquin C; Ailhas J; Kuno N; Uchida K; Gaude T; Furuya M; Dumas C
    Plant Physiol; 2003 Jun; 132(2):653-65. PubMed ID: 12805595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.