BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37075934)

  • 1. Matrine-induced nephrotoxicity via GSK-3β/nrf2-mediated mitochondria-dependent apoptosis.
    Wang T; Zhang J; Wei H; Wang X; Xie M; Jiang Y; Zhou J
    Chem Biol Interact; 2023 Jun; 378():110492. PubMed ID: 37075934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrine Exerts Hepatotoxic Effects via the ROS-Dependent Mitochondrial Apoptosis Pathway and Inhibition of Nrf2-Mediated Antioxidant Response.
    You L; Yang C; Du Y; Liu Y; Chen G; Sai N; Dong X; Yin X; Ni J
    Oxid Med Cell Longev; 2019; 2019():1045345. PubMed ID: 31737162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GSKIP protects cardiomyocytes from hypoxia/reoxygenation-induced injury by enhancing Nrf2 activation via GSK-3β inhibition.
    Yan L; Cheng G; Yang G
    Biochem Biophys Res Commun; 2020 Oct; 532(1):68-75. PubMed ID: 32828530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PHLPP2 downregulation protects cardiomyocytes against hypoxia-induced injury through reinforcing Nrf2/ARE antioxidant signaling.
    Jin A; Li B; Li W; Xiao D
    Chem Biol Interact; 2019 Dec; 314():108848. PubMed ID: 31610156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GSPE reduces lead-induced oxidative stress by activating the Nrf2 pathway and suppressing miR153 and GSK-3β in rat kidney.
    Liu B; Zhang H; Tan X; Yang D; Lv Z; Jiang H; Lu J; Baiyun R; Zhang Z
    Oncotarget; 2017 Jun; 8(26):42226-42237. PubMed ID: 28178683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Farrerol Directly Targets GSK-3
    Yan C; Zhang X; Miao J; Yuan H; Liu E; Liang T; Li Q
    Oxid Med Cell Longev; 2020; 2020():5967434. PubMed ID: 32082480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triptolide induces oxidative damage in NRK-52E cells through facilitating Nrf2 degradation by ubiquitination via the GSK-3β/Fyn pathway.
    Pan J; Shen F; Tian K; Wang M; Xi Y; Li J; Huang Z
    Toxicol In Vitro; 2019 Aug; 58():187-194. PubMed ID: 30926361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dexmedetomidine ameliorates lipopolysaccharide-induced acute kidney injury in rats by inhibiting inflammation and oxidative stress via the GSK-3β/Nrf2 signaling pathway.
    Feng X; Guan W; Zhao Y; Wang C; Song M; Yao Y; Yang T; Fan H
    J Cell Physiol; 2019 Aug; 234(10):18994-19009. PubMed ID: 30919976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hepatocyte-protective effect of nectandrin B, a nutmeg lignan, against oxidative stress: Role of Nrf2 activation through ERK phosphorylation and AMPK-dependent inhibition of GSK-3β.
    Song JS; Kim EK; Choi YW; Oh WK; Kim YM
    Toxicol Appl Pharmacol; 2016 Sep; 307():138-149. PubMed ID: 27511913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfiredoxin-1 protects retinal ganglion cells from high glucose-induced oxidative stress and inflammatory injury by potentiating Nrf2 signaling via the Akt/GSK-3β pathway.
    Zhu F; Shao J; Tian Y; Xu Z
    Int Immunopharmacol; 2021 Dec; 101(Pt B):108221. PubMed ID: 34653733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Cytoprotective Effect of Hyperoside against Oxidative Stress Is Mediated by the Nrf2-ARE Signaling Pathway through GSK-3β Inactivation.
    Xing HY; Cai YQ; Wang XF; Wang LL; Li P; Wang GY; Chen JH
    PLoS One; 2015; 10(12):e0145183. PubMed ID: 26674355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutaredoxin 1 protects neurons from oxygen-glucose deprivation/reoxygenation (OGD/R)-induced apoptosis and oxidative stress via the modulation of GSK-3β/Nrf2 signaling.
    Qiu Z; Li X; Duan C; Li R; Han L
    J Bioenerg Biomembr; 2021 Aug; 53(4):369-379. PubMed ID: 33956252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paraoxonase 2 protects against oxygen-glucose deprivation/reoxygenation-induced neuronal injury by enhancing Nrf2 activation via GSK-3β modulation.
    Bai J; Jia P; Zhang Y; Wang K; Wu G
    Hum Exp Toxicol; 2021 Aug; 40(8):1342-1354. PubMed ID: 33624547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Obacunone attenuates high glucose-induced oxidative damage in NRK-52E cells by inhibiting the activity of GSK-3β.
    Zhou J; Wang T; Wang H; Jiang Y; Peng S
    Biochem Biophys Res Commun; 2019 May; 513(1):226-233. PubMed ID: 30954216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfiredoxin-1 alleviates high glucose-induced podocyte injury though promoting Nrf2/ARE signaling via inactivation of GSK-3β.
    Shen Y; Chen S; Zhao Y
    Biochem Biophys Res Commun; 2019 Sep; 516(4):1137-1144. PubMed ID: 31284950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rosmarinic acid attenuates β-amyloid-induced oxidative stress via Akt/GSK-3β/Fyn-mediated Nrf2 activation in PC12 cells.
    Rong H; Liang Y; Niu Y
    Free Radic Biol Med; 2018 May; 120():114-123. PubMed ID: 29555592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of lemur tyrosine kinase-2 protects neurons from oxygen-glucose deprivation/reoxygenation-induced injury through reinforcement of Nrf2 signaling by modulating GSK-3β phosphorylation.
    Bao H; Gao M
    Biochem Biophys Res Commun; 2020 Jan; 521(4):964-970. PubMed ID: 31722791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GSK-3β-mediated regulation of Nrf2/HO-1 signaling as a new therapeutic approach in the treatment of movement disorders.
    Soni D; Kumar P
    Pharmacol Rep; 2022 Aug; 74(4):557-569. PubMed ID: 35882765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perilipin 5 ameliorates high-glucose-induced podocyte injury via Akt/GSK-3β/Nrf2-mediated suppression of apoptosis, oxidative stress, and inflammation.
    Feng J; Xie L; Yu X; Liu C; Dong H; Lu W; Kong R
    Biochem Biophys Res Commun; 2021 Mar; 544():22-30. PubMed ID: 33516878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moringa oleifera Lam. seed extract protects kidney function in rats with diabetic nephropathy by increasing GSK-3β activity and activating the Nrf2/HO-1 pathway.
    Wen Y; Liu Y; Huang Q; Liu R; Liu J; Zhang F; Liu S; Jiang Y
    Phytomedicine; 2022 Jan; 95():153856. PubMed ID: 34856477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.