BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 37075952)

  • 1. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function.
    Uzhytchak M; Smolková B; Lunova M; Frtús A; Jirsa M; Dejneka A; Lunov O
    Adv Drug Deliv Rev; 2023 Jun; 197():114828. PubMed ID: 37075952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Safety and Toxicological Considerations of Nanomedicines: The Future Directions.
    Patel P; Shah J
    Curr Clin Pharmacol; 2017; 12(2):73-82. PubMed ID: 28486906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in green nanoparticulate systems for drug delivery: efficient delivery and safety concern.
    Lam PL; Wong WY; Bian Z; Chui CH; Gambari R
    Nanomedicine (Lond); 2017 Feb; 12(4):357-385. PubMed ID: 28078952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preclinical hazard evaluation strategy for nanomedicines.
    Siegrist S; Cörek E; Detampel P; Sandström J; Wick P; Huwyler J
    Nanotoxicology; 2019 Feb; 13(1):73-99. PubMed ID: 30182784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Nano-Bio Interactions of Nanomedicines: Understanding the Biochemical Driving Forces and Redox Reactions.
    Wang Y; Cai R; Chen C
    Acc Chem Res; 2019 Jun; 52(6):1507-1518. PubMed ID: 31149804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating Nanomedicines: Obstacles and Advancements.
    Swierczewska M; Crist RM; McNeil SE
    Methods Mol Biol; 2018; 1682():3-16. PubMed ID: 29039088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of nanomedicines by nanohybrids conjugating ginsenosides with auto-targeting and enhanced MRI contrast for liver cancer therapy.
    Zhao X; Wang J; Song Y; Chen X
    Drug Dev Ind Pharm; 2018 Aug; 44(8):1307-1316. PubMed ID: 29527925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysosomal impairment-mediated autophagy dysfunction responsible for the vascular endothelial apoptosis caused by silica nanoparticle via ROS/PARP1/AIF signaling pathway.
    Abulikemu A; Zhao X; Qi Y; Liu Y; Wang J; Zhou W; Duan H; Li Y; Sun Z; Guo C
    Environ Pollut; 2022 Jul; 304():119202. PubMed ID: 35358632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Snapshots of Iron Speciation: Tracking the Fate of Iron Nanoparticle Drugs via a Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometric Approach.
    Neu HM; Alexishin SA; Brandis JEP; Williams AMC; Li W; Sun D; Zheng N; Jiang W; Zimrin A; Fink JC; Polli JE; Kane MA; Michel SLJ
    Mol Pharm; 2019 Mar; 16(3):1272-1281. PubMed ID: 30676753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Cellulose-Nanocrystal-Based Folate Targeted Nanomedicine via Layer-by-Layer Assembly with Lysosomal pH-Controlled Drug Release into the Nucleus.
    Li N; Zhang H; Xiao Y; Huang Y; Xu M; You D; Lu W; Yu J
    Biomacromolecules; 2019 Feb; 20(2):937-948. PubMed ID: 30621397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survey of Clinical Translation of Cancer Nanomedicines-Lessons Learned from Successes and Failures.
    He H; Liu L; Morin EE; Liu M; Schwendeman A
    Acc Chem Res; 2019 Sep; 52(9):2445-2461. PubMed ID: 31424909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomedical engineering: shaping future nanomedicines.
    Luo D; Carter KA; Lovell JF
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(2):169-88. PubMed ID: 25377691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomedicines: Redefining traditional medicine.
    Lu W; Yao J; Zhu X; Qi Y
    Biomed Pharmacother; 2021 Feb; 134():111103. PubMed ID: 33338747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. More effective nanomedicines through particle design.
    Wang J; Byrne JD; Napier ME; DeSimone JM
    Small; 2011 Jul; 7(14):1919-31. PubMed ID: 21695781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of the current scientific and regulatory status of nanomedicines and the challenges ahead.
    Hock SC; Ying YM; Wah CL
    PDA J Pharm Sci Technol; 2011; 65(2):177-95. PubMed ID: 21502077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Safe-by-Design Strategy towards Safer Nanomaterials in Nanomedicines.
    Yan L; Zhao F; Wang J; Zu Y; Gu Z; Zhao Y
    Adv Mater; 2019 Nov; 31(45):e1805391. PubMed ID: 30701603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: impact on translational nanomedicine.
    Milane L; Amiji M
    Drug Deliv Transl Res; 2021 Aug; 11(4):1309-1315. PubMed ID: 33512669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation.
    Mills JA; Liu F; Jarrett TR; Fletcher NL; Thurecht KJ
    Biomater Sci; 2022 Jun; 10(12):3029-3053. PubMed ID: 35419582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trends in Nanomedicines for Cancer Treatment.
    do Nascimento T; Todeschini AR; Santos-Oliveira R; de Souza de Bustamante Monteiro MS; de Souza VT; Ricci-Júnior E
    Curr Pharm Des; 2020; 26(29):3579-3600. PubMed ID: 32186271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial intelligence aids in development of nanomedicines for cancer management.
    Tan P; Chen X; Zhang H; Wei Q; Luo K
    Semin Cancer Biol; 2023 Feb; 89():61-75. PubMed ID: 36682438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.