BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37076048)

  • 1. Proteome Dynamics During Transition From Exponential to Stationary Phase Under Aerobic and Anaerobic Conditions in Yeast.
    Ridder MD; van den Brandeler W; Altiner M; Daran-Lapujade P; Pabst M
    Mol Cell Proteomics; 2023 Jun; 22(6):100552. PubMed ID: 37076048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes.
    de Groot MJL; Daran-Lapujade P; van Breukelen B; Knijnenburg TA; de Hulster EAF; Reinders MJT; Pronk JT; Heck AJR; Slijper M
    Microbiology (Reading); 2007 Nov; 153(Pt 11):3864-3878. PubMed ID: 17975095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A systematic evaluation of yeast sample preparation protocols for spectral identifications, proteome coverage and post-isolation modifications.
    den Ridder M; Knibbe E; van den Brandeler W; Daran-Lapujade P; Pabst M
    J Proteomics; 2022 Jun; 261():104576. PubMed ID: 35351659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells.
    Bruckmann A; Hensbergen PJ; Balog CI; Deelder AM; Brandt R; Snoek IS; Steensma HY; van Heusden GP
    J Proteomics; 2009 Jan; 71(6):662-9. PubMed ID: 19070690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol.
    Kolkman A; Olsthoorn MM; Heeremans CE; Heck AJ; Slijper M
    Mol Cell Proteomics; 2005 Jan; 4(1):1-11. PubMed ID: 15502163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast Interspecies Comparative Proteomics Reveals Divergence in Expression Profiles and Provides Insights into Proteome Resource Allocation and Evolutionary Roles of Gene Duplication.
    Kito K; Ito H; Nohara T; Ohnishi M; Ishibashi Y; Takeda D
    Mol Cell Proteomics; 2016 Jan; 15(1):218-35. PubMed ID: 26560065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive Temporal Protein Dynamics during the Diauxic Shift in Saccharomyces cerevisiae.
    Murphy JP; Stepanova E; Everley RA; Paulo JA; Gygi SP
    Mol Cell Proteomics; 2015 Sep; 14(9):2454-65. PubMed ID: 26077900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absolute yeast mitochondrial proteome quantification reveals trade-off between biosynthesis and energy generation during diauxic shift.
    Di Bartolomeo F; Malina C; Campbell K; Mormino M; Fuchs J; Vorontsov E; Gustafsson CM; Nielsen J
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7524-7535. PubMed ID: 32184324
    [No Abstract]   [Full Text] [Related]  

  • 9. Proteome reallocation from amino acid biosynthesis to ribosomes enables yeast to grow faster in rich media.
    Björkeroth J; Campbell K; Malina C; Yu R; Di Bartolomeo F; Nielsen J
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21804-21812. PubMed ID: 32817546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions.
    Wiebe MG; Rintala E; Tamminen A; Simolin H; Salusjärvi L; Toivari M; Kokkonen JT; Kiuru J; Ketola RA; Jouhten P; Huuskonen A; Maaheimo H; Ruohonen L; Penttilä M
    FEMS Yeast Res; 2008 Feb; 8(1):140-54. PubMed ID: 17425669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential proteomic analysis by SWATH-MS unravels the most dominant mechanisms underlying yeast adaptation to non-optimal temperatures under anaerobic conditions.
    Pinheiro T; Lip KYF; García-Ríos E; Querol A; Teixeira J; van Gulik W; Guillamón JM; Domingues L
    Sci Rep; 2020 Dec; 10(1):22329. PubMed ID: 33339840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional regulation in yeast during diauxic shift and stationary phase.
    Galdieri L; Mehrotra S; Yu S; Vancura A
    OMICS; 2010 Dec; 14(6):629-38. PubMed ID: 20863251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome adaptation of Saccharomyces cerevisiae to severe calorie restriction in Retentostat cultures.
    Binai NA; Bisschops MM; van Breukelen B; Mohammed S; Loeff L; Pronk JT; Heck AJ; Daran-Lapujade P; Slijper M
    J Proteome Res; 2014 Aug; 13(8):3542-53. PubMed ID: 25000127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccharomyces cerevisiae in the stationary phase as a model organism--characterization at cellular and proteome level.
    Zakrajšek T; Raspor P; Jamnik P
    J Proteomics; 2011 Nov; 74(12):2837-45. PubMed ID: 21782986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic growth of Saccharomyces cerevisiae CEN.PK113-7D does not depend on synthesis or supplementation of unsaturated fatty acids.
    Dekker WJC; Wiersma SJ; Bouwknegt J; Mooiman C; Pronk JT
    FEMS Yeast Res; 2019 Sep; 19(6):. PubMed ID: 31425603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae.
    Rintala E; Toivari M; Pitkänen JP; Wiebe MG; Ruohonen L; Penttilä M
    BMC Genomics; 2009 Oct; 10():461. PubMed ID: 19804647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of different glucose concentrations on proteome of Saccharomyces cerevisiae.
    Guidi F; Magherini F; Gamberi T; Borro M; Simmaco M; Modesti A
    Biochim Biophys Acta; 2010 Jul; 1804(7):1516-25. PubMed ID: 20362699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae.
    Paulo JA; O'Connell JD; Gaun A; Gygi SP
    Mol Biol Cell; 2015 Nov; 26(22):4063-74. PubMed ID: 26399295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Oxygen-Independent Pathways for Pyridine Nucleotide and Coenzyme A Synthesis in Anaerobic Fungi by Expression of Candidate Genes in Yeast.
    Perli T; Vos AM; Bouwknegt J; Dekker WJC; Wiersma SJ; Mooiman C; Ortiz-Merino RA; Daran JM; Pronk JT
    mBio; 2021 Jun; 12(3):e0096721. PubMed ID: 34154398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide effect of non-optimal temperatures under anaerobic conditions on gene expression in Saccharomyces cerevisiae.
    García-Ríos E; Alonso-Del-Real J; Lip KYF; Pinheiro T; Teixeira J; van Gulik W; Domingues L; Querol A; Guillamón JM
    Genomics; 2022 Jul; 114(4):110386. PubMed ID: 35569731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.