BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37076048)

  • 21. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates.
    Vos T; Hakkaart XD; de Hulster EA; van Maris AJ; Pronk JT; Daran-Lapujade P
    Microb Cell Fact; 2016 Jun; 15(1):111. PubMed ID: 27317316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative proteome analysis of different Saccharomyces cerevisiae strains during growth on sucrose and glucose.
    Soares Rodrigues CI; den Ridder M; Pabst M; Gombert AK; Wahl SA
    Sci Rep; 2023 Feb; 13(1):2126. PubMed ID: 36746999
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of mitochondrial membranes in anaerobically grown yeast cells.
    Nagata I; Furuya E; Yoshida Y; Kanaseki T; Tagawa K
    J Biochem; 1975 Dec; 78(6):1353-64. PubMed ID: 131794
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A three-way proteomics strategy allows differential analysis of yeast mitochondrial membrane protein complexes under anaerobic and aerobic conditions.
    Helbig AO; de Groot MJ; van Gestel RA; Mohammed S; de Hulster EA; Luttik MA; Daran-Lapujade P; Pronk JT; Heck AJ; Slijper M
    Proteomics; 2009 Oct; 9(20):4787-98. PubMed ID: 19750512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export.
    van Maris AJ; Winkler AA; Porro D; van Dijken JP; Pronk JT
    Appl Environ Microbiol; 2004 May; 70(5):2898-905. PubMed ID: 15128549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential glucose repression in common yeast strains in response to HXK2 deletion.
    Kümmel A; Ewald JC; Fendt SM; Jol SJ; Picotti P; Aebersold R; Sauer U; Zamboni N; Heinemann M
    FEMS Yeast Res; 2010 May; 10(3):322-32. PubMed ID: 20199578
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolome dynamic responses of Saccharomyces cerevisiae to simultaneous rapid perturbations in external electron acceptor and electron donor.
    Mashego MR; van Gulik WM; Heijnen JJ
    FEMS Yeast Res; 2007 Jan; 7(1):48-66. PubMed ID: 17311584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap.
    Nagaraj N; Kulak NA; Cox J; Neuhauser N; Mayr K; Hoerning O; Vorm O; Mann M
    Mol Cell Proteomics; 2012 Mar; 11(3):M111.013722. PubMed ID: 22021278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.
    Sato TK; Tremaine M; Parreiras LS; Hebert AS; Myers KS; Higbee AJ; Sardi M; McIlwain SJ; Ong IM; Breuer RJ; Avanasi Narasimhan R; McGee MA; Dickinson Q; La Reau A; Xie D; Tian M; Reed JL; Zhang Y; Coon JJ; Hittinger CT; Gasch AP; Landick R
    PLoS Genet; 2016 Oct; 12(10):e1006372. PubMed ID: 27741250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluating proteome allocation of Saccharomyces cerevisiae phenotypes with resource balance analysis.
    Dinh HV; Maranas CD
    Metab Eng; 2023 May; 77():242-255. PubMed ID: 37080482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A proteome-integrated, carbon source dependent genetic regulatory network in Saccharomyces cerevisiae.
    Garcia-Albornoz M; Holman SW; Antonisse T; Daran-Lapujade P; Teusink B; Beynon RJ; Hubbard SJ
    Mol Omics; 2020 Feb; 16(1):59-72. PubMed ID: 31868867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 2nSILAC for Quantitative Proteomics of Prototrophic Baker's Yeast.
    Dannenmaier S; Oeljeklaus S; Warscheid B
    Methods Mol Biol; 2021; 2228():253-270. PubMed ID: 33950496
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aerobic adaptation in yeast, IV. Alterations in enzyme synthesis during anaerobic-aerobic transitions in exponentially growing cultures.
    Ball AJ; Bruver RM; Tustanoff ER
    Can J Microbiol; 1975 Jun; 21(6):869-76. PubMed ID: 167929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel single-cell screening platform reveals proteome plasticity during yeast stress responses.
    Breker M; Gymrek M; Schuldiner M
    J Cell Biol; 2013 Mar; 200(6):839-50. PubMed ID: 23509072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of pyruvate decarboxylase overproduction on flux distribution at the pyruvate branch point in Saccharomyces cerevisiae.
    van Hoek P; Flikweert MT; van der Aart QJ; Steensma HY; van Dijken JP; Pronk JT
    Appl Environ Microbiol; 1998 Jun; 64(6):2133-40. PubMed ID: 9603825
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence Detection of Increased Reactive Oxygen Species Levels in Saccharomyces cerevisiae at the Diauxic Shift.
    Sinha A; Pick E
    Methods Mol Biol; 2021; 2202():81-91. PubMed ID: 32857348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Forever panting and forever growing: physiology of Saccharomyces cerevisiae at extremely low oxygen availability in the absence of ergosterol and unsaturated fatty acids.
    da Costa BLV; Raghavendran V; Franco LFM; Chaves Filho AB; Yoshinaga MY; Miyamoto S; Basso TO; Gombert AK
    FEMS Yeast Res; 2019 Sep; 19(6):. PubMed ID: 31425576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteome-wide screens in Saccharomyces cerevisiae using the yeast GFP collection.
    Chong YT; Cox MJ; Andrews B
    Adv Exp Med Biol; 2012; 736():169-78. PubMed ID: 22161327
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Computational Toolbox to Investigate the Metabolic Potential and Resource Allocation in Fission Yeast.
    Grigaitis P; Grundel DAJ; van Pelt-KleinJan E; Isaku M; Xie G; Mendoza Farias S; Teusink B; van Heerden JH
    mSystems; 2022 Aug; 7(4):e0042322. PubMed ID: 35950759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.