These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 37076374)
1. Wind turbine anomaly detection based on SCADA: A deep autoencoder enhanced by fault instances. Liu J; Yang G; Li X; Wang Q; He Y; Yang X ISA Trans; 2023 Aug; 139():586-605. PubMed ID: 37076374 [TBL] [Abstract][Full Text] [Related]
2. A Multiscale Spatio-Temporal Convolutional Deep Belief Network for Sensor Fault Detection of Wind Turbine. Wang H; Wang H; Jiang G; Wang Y; Ren S Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32599907 [TBL] [Abstract][Full Text] [Related]
3. A combined mono- and multi-turbine approach for fault indicator synthesis and wind turbine monitoring using SCADA data. Lebranchu A; Charbonnier S; Bérenguer C; Prévost F ISA Trans; 2019 Apr; 87():272-281. PubMed ID: 30545768 [TBL] [Abstract][Full Text] [Related]
4. A deep capsule neural network with data augmentation generative adversarial networks for single and simultaneous fault diagnosis of wind turbine gearbox. Liang P; Deng C; Yuan X; Zhang L ISA Trans; 2023 Apr; 135():462-475. PubMed ID: 37032568 [TBL] [Abstract][Full Text] [Related]
5. A High-Dimensional and Small-Sample Submersible Fault Detection Method Based on Feature Selection and Data Augmentation. Zhao P; Zheng Q; Ding Z; Zhang Y; Wang H; Yang Y Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009748 [TBL] [Abstract][Full Text] [Related]
6. Fault Detection and Diagnosis Using Combined Autoencoder and Long Short-Term Memory Network. Park P; Marco PD; Shin H; Bang J Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31652821 [TBL] [Abstract][Full Text] [Related]
7. Research on Wind Turbine Fault Detection Based on the Fusion of ASL-CatBoost and TtRSA. Kong L; Liang H; Liu G; Liu S Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571525 [TBL] [Abstract][Full Text] [Related]
8. Unsupervised Deep Anomaly Detection for Medical Images Using an Improved Adversarial Autoencoder. Zhang H; Guo W; Zhang S; Lu H; Zhao X J Digit Imaging; 2022 Apr; 35(2):153-161. PubMed ID: 35013826 [TBL] [Abstract][Full Text] [Related]
9. Intelligent fault detection scheme for constant-speed wind turbines based on improved multiscale fuzzy entropy and adaptive chaotic Aquila optimization-based support vector machine. Wang Z; Li G; Yao L; Cai Y; Lin T; Zhang J; Dong H ISA Trans; 2023 Jul; 138():582-602. PubMed ID: 36966057 [TBL] [Abstract][Full Text] [Related]
10. A New Dual-Input Deep Anomaly Detection Method for Early Faults Warning of Rolling Bearings. Kang Y; Chen G; Wang H; Pan W; Wei X Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766068 [TBL] [Abstract][Full Text] [Related]
11. A Deep Autoencoder-Based Convolution Neural Network Framework for Bearing Fault Classification in Induction Motors. Toma RN; Piltan F; Kim JM Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960552 [TBL] [Abstract][Full Text] [Related]
12. A Probabilistic Bayesian Parallel Deep Learning Framework for Wind Turbine Bearing Fault Diagnosis. Meng L; Su Y; Kong X; Lan X; Li Y; Xu T; Ma J Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236741 [TBL] [Abstract][Full Text] [Related]
13. A Smart-Anomaly-Detection System for Industrial Machines Based on Feature Autoencoder and Deep Learning. Ahmed I; Ahmad M; Chehri A; Jeon G Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677215 [TBL] [Abstract][Full Text] [Related]
14. Generative Transfer Learning for Intelligent Fault Diagnosis of the Wind Turbine Gearbox. Guo J; Wu J; Zhang S; Long J; Chen W; Cabrera D; Li C Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32131393 [TBL] [Abstract][Full Text] [Related]
15. Wind Turbine Main Bearing Fault Prognosis Based Solely on SCADA Data. Encalada-Dávila Á; Puruncajas B; Tutivén C; Vidal Y Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33806744 [TBL] [Abstract][Full Text] [Related]
16. Fault Diagnosis Method for Imbalanced Data Based on Multi-Signal Fusion and Improved Deep Convolution Generative Adversarial Network. Deng C; Deng Z; Lu S; He M; Miao J; Peng Y Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904745 [TBL] [Abstract][Full Text] [Related]
17. A Fault-Diagnosis Method for Railway Turnout Systems Based on Improved Autoencoder and Data Augmentation. Li M; Hei X; Ji W; Zhu L; Wang Y; Qiu Y Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502142 [TBL] [Abstract][Full Text] [Related]
18. An Unsupervised Deep Feature Learning Model Based on Parallel Convolutional Autoencoder for Intelligent Fault Diagnosis of Main Reducer. Ye Q; Liu C Comput Intell Neurosci; 2021; 2021():8922656. PubMed ID: 34630558 [TBL] [Abstract][Full Text] [Related]
19. Deep Convolutional Neural Network with Deconvolution and a Deep Autoencoder for Fault Detection and Diagnosis. Kanno Y; Kaneko H ACS Omega; 2022 Jan; 7(2):2458-2466. PubMed ID: 35071933 [TBL] [Abstract][Full Text] [Related]
20. Generative adversarial network in mechanical fault diagnosis under small sample: A systematic review on applications and future perspectives. Pan T; Chen J; Zhang T; Liu S; He S; Lv H ISA Trans; 2022 Sep; 128(Pt B):1-10. PubMed ID: 34953580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]