These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37076484)

  • 21. Phonon-interface scattering in multilayer graphene on an amorphous support.
    Sadeghi MM; Jo I; Shi L
    Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16321-6. PubMed ID: 24067656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.
    Kang JS; Wu H; Hu Y
    Nano Lett; 2017 Dec; 17(12):7507-7514. PubMed ID: 29115845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrodynamic Heat Transport Regime in Bismuth: A Theoretical Viewpoint.
    Markov M; Sjakste J; Barbarino G; Fugallo G; Paulatto L; Lazzeri M; Mauri F; Vast N
    Phys Rev Lett; 2018 Feb; 120(7):075901. PubMed ID: 29542969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Descriptors of intrinsic hydrodynamic thermal transport: screening a phonon database in a machine learning approach.
    Torres P; Wu S; Ju S; Liu C; Tadano T; Yoshida R; Shiomi J
    J Phys Condens Matter; 2022 Jan; 34(13):. PubMed ID: 35008073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transient Hydrodynamic Lattice Cooling by Picosecond Laser Irradiation of Graphite.
    Jeong J; Li X; Lee S; Shi L; Wang Y
    Phys Rev Lett; 2021 Aug; 127(8):085901. PubMed ID: 34477405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anomalous size dependence of the thermal conductivity of graphene ribbons.
    Nika DL; Askerov AS; Balandin AA
    Nano Lett; 2012 Jun; 12(6):3238-44. PubMed ID: 22612247
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal Transport and Phonon Hydrodynamics in Strontium Titanate.
    Martelli V; Jiménez JL; Continentino M; Baggio-Saitovitch E; Behnia K
    Phys Rev Lett; 2018 Mar; 120(12):125901. PubMed ID: 29694090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phonon Surface Scattering and Thermal Energy Distribution in Superlattices.
    Kothari K; Maldovan M
    Sci Rep; 2017 Jul; 7(1):5625. PubMed ID: 28717137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microscopic Mechanisms of Glasslike Lattice Thermal Transport in Cubic Cu_{12}Sb_{4}S_{13} Tetrahedrites.
    Xia Y; Ozoliņš V; Wolverton C
    Phys Rev Lett; 2020 Aug; 125(8):085901. PubMed ID: 32909770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visualizing Poiseuille flow of hydrodynamic electrons.
    Sulpizio JA; Ella L; Rozen A; Birkbeck J; Perello DJ; Dutta D; Ben-Shalom M; Taniguchi T; Watanabe K; Holder T; Queiroz R; Principi A; Stern A; Scaffidi T; Geim AK; Ilani S
    Nature; 2019 Dec; 576(7785):75-79. PubMed ID: 31802019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal conductivity of group-IV semiconductors from a kinetic-collective model.
    de Tomas C; Cantarero A; Lopeandia AF; Alvarez FX
    Proc Math Phys Eng Sci; 2014 Sep; 470(2169):20140371. PubMed ID: 25197256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-dimensional phonon transport in graphene.
    Nika DL; Balandin AA
    J Phys Condens Matter; 2012 Jun; 24(23):233203. PubMed ID: 22562955
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-field electrical and thermal transport in suspended graphene.
    Dorgan VE; Behnam A; Conley HJ; Bolotin KI; Pop E
    Nano Lett; 2013 Oct; 13(10):4581-6. PubMed ID: 23387323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A General and Predictive Understanding of Thermal Transport from 1D- and 2D-Confined Nanostructures: Theory and Experiment.
    Beardo A; Knobloch JL; Sendra L; Bafaluy J; Frazer TD; Chao W; Hernandez-Charpak JN; Kapteyn HC; Abad B; Murnane MM; Alvarez FX; Camacho J
    ACS Nano; 2021 Aug; 15(8):13019-13030. PubMed ID: 34328719
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency.
    Hoogeboom-Pot KM; Hernandez-Charpak JN; Gu X; Frazer TD; Anderson EH; Chao W; Falcone RW; Yang R; Murnane MM; Kapteyn HC; Nardi D
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):4846-51. PubMed ID: 25831491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anisotropic Tuning of Graphite Thermal Conductivity by Lithium Intercalation.
    Qian X; Gu X; Dresselhaus MS; Yang R
    J Phys Chem Lett; 2016 Nov; 7(22):4744-4750. PubMed ID: 27806567
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phonon anharmonicities in graphite and graphene.
    Bonini N; Lazzeri M; Marzari N; Mauri F
    Phys Rev Lett; 2007 Oct; 99(17):176802. PubMed ID: 17995357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ballistic to diffusive crossover of heat flow in graphene ribbons.
    Bae MH; Li Z; Aksamija Z; Martin PN; Xiong F; Ong ZY; Knezevic I; Pop E
    Nat Commun; 2013; 4():1734. PubMed ID: 23591901
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tunable heat conduction through coupled Fermi-Pasta-Ulam chains.
    Su R; Yuan Z; Wang J; Zheng Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012136. PubMed ID: 25679599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct measurements of surface scattering in Si nanosheets using a microscale phonon spectrometer: implications for Casimir-limit predicted by Ziman theory.
    Hertzberg JB; Aksit M; Otelaja OO; Stewart DA; Robinson RD
    Nano Lett; 2014 Feb; 14(2):403-15. PubMed ID: 24256332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.