These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37076527)

  • 21. Modeling distributions of flying insects: effective attraction radius of pheromone in two and three dimensions.
    Byers JA
    J Theor Biol; 2009 Jan; 256(1):81-9. PubMed ID: 18845163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation-based insect-inspired flight systems.
    Liu H
    Curr Opin Insect Sci; 2020 Dec; 42():105-109. PubMed ID: 33068784
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Innovative Harmonic Radar to Track Flying Insects: the Case of Vespa velutina.
    Maggiora R; Saccani M; Milanesio D; Porporato M
    Sci Rep; 2019 Aug; 9(1):11964. PubMed ID: 31427653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vision in flying insects.
    Egelhaaf M; Kern R
    Curr Opin Neurobiol; 2002 Dec; 12(6):699-706. PubMed ID: 12490262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Orientation in high-flying migrant insects in relation to flows: mechanisms and strategies.
    Reynolds AM; Reynolds DR; Sane SP; Hu G; Chapman JW
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Active anemosensing hypothesis: how flying insects could estimate ambient wind direction through sensory integration and active movement.
    van Breugel F; Jewell R; Houle J
    J R Soc Interface; 2022 Aug; 19(193):20220258. PubMed ID: 36043287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanics and biomimetics in insect-inspired flight systems.
    Liu H; Ravi S; Kolomenskiy D; Tanaka H
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insect and insect-inspired aerodynamics: unsteadiness, structural mechanics and flight control.
    Bomphrey RJ; Godoy-Diana R
    Curr Opin Insect Sci; 2018 Dec; 30():26-32. PubMed ID: 30410869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Power requirements for the hovering flight of insects with different sizes.
    Lyu YZ; Sun M
    J Insect Physiol; 2021 Oct; 134():104293. PubMed ID: 34389411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vibrational control: A hidden stabilization mechanism in insect flight.
    Taha HE; Kiani M; Hedrick TL; Greeter JSM
    Sci Robot; 2020 Sep; 5(46):. PubMed ID: 32999048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Properties of neuronal facilitation that improve target tracking in natural pursuit simulations.
    Bagheri ZM; Wiederman SD; Cazzolato BS; Grainger S; O'Carroll DC
    J R Soc Interface; 2015 Jul; 12(108):20150083. PubMed ID: 26063815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Limitations of rotational manoeuvrability in insects and hummingbirds: evaluating the effects of neuro-biomechanical delays and muscle mechanical power.
    Liu P; Cheng B
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28679665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Context-dependent stimulus presentation to freely moving animals in 3D.
    Fry SN; Müller P; Baumann HJ; Straw AD; Bichsel M; Robert D
    J Neurosci Methods; 2004 May; 135(1-2):149-57. PubMed ID: 15020099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coherent Pattern Prediction in Swarms of Delay-Coupled Agents.
    Mier-Y-Teran-Romero L; Forgoston E; Schwartz IB
    IEEE Trans Robot; 2012 Oct; 28(5):1034-1044. PubMed ID: 24255625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical tracking and laser-induced mortality of insects during flight.
    Keller MD; Norton BJ; Farrar DJ; Rutschman P; Marvit M; Makagon A
    Sci Rep; 2020 Sep; 10(1):14795. PubMed ID: 32908169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing insect flight research with a lab-on-cables.
    Sane SP
    Sci Robot; 2020 Aug; 5(45):. PubMed ID: 33022634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The flying insect thoracic cuticle is heterogenous in structure and in thickness-dependent modulus gradation.
    Casey C; Yager C; Jankauski M; Heveran CM
    Acta Biomater; 2022 Jan; 138():422-429. PubMed ID: 34740857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mass seasonal bioflows of high-flying insect migrants.
    Hu G; Lim KS; Horvitz N; Clark SJ; Reynolds DR; Sapir N; Chapman JW
    Science; 2016 Dec; 354(6319):1584-1587. PubMed ID: 28008067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flight orientation behaviors promote optimal migration trajectories in high-flying insects.
    Chapman JW; Nesbit RL; Burgin LE; Reynolds DR; Smith AD; Middleton DR; Hill JK
    Science; 2010 Feb; 327(5966):682-5. PubMed ID: 20133570
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of optimal feedback control rules from micro-quadrotor and insect flight trajectories.
    Faruque IA; Muijres FT; Macfarlane KM; Kehlenbeck A; Humbert JS
    Biol Cybern; 2018 Jun; 112(3):165-179. PubMed ID: 29299686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.