BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 37076618)

  • 1. Lesion recognition by XPC, TFIIH and XPA in DNA excision repair.
    Kim J; Li CL; Chen X; Cui Y; Golebiowski FM; Wang H; Hanaoka F; Sugasawa K; Yang W
    Nature; 2023 May; 617(7959):170-175. PubMed ID: 37076618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tripartite DNA Lesion Recognition and Verification by XPC, TFIIH, and XPA in Nucleotide Excision Repair.
    Li CL; Golebiowski FM; Onishi Y; Samara NL; Sugasawa K; Yang W
    Mol Cell; 2015 Sep; 59(6):1025-34. PubMed ID: 26384665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors.
    Evans E; Moggs JG; Hwang JR; Egly JM; Wood RD
    EMBO J; 1997 Nov; 16(21):6559-73. PubMed ID: 9351836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase.
    Fuss JO; Tainer JA
    DNA Repair (Amst); 2011 Jul; 10(7):697-713. PubMed ID: 21571596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lack of CAK complex accumulation at DNA damage sites in XP-B and XP-B/CS fibroblasts reveals differential regulation of CAK anchoring to core TFIIH by XPB and XPD helicases during nucleotide excision repair.
    Zhu Q; Wani G; Sharma N; Wani A
    DNA Repair (Amst); 2012 Dec; 11(12):942-50. PubMed ID: 23083890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryo-EM structure of TFIIH/Rad4-Rad23-Rad33 in damaged DNA opening in nucleotide excision repair.
    van Eeuwen T; Shim Y; Kim HJ; Zhao T; Basu S; Garcia BA; Kaplan CD; Min JH; Murakami K
    Nat Commun; 2021 Jun; 12(1):3338. PubMed ID: 34099686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair.
    Sugasawa K
    DNA Repair (Amst); 2016 Aug; 44():110-117. PubMed ID: 27264556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular basis for damage recognition and verification by XPC-RAD23B and TFIIH in nucleotide excision repair.
    Mu H; Geacintov NE; Broyde S; Yeo JE; Schärer OD
    DNA Repair (Amst); 2018 Nov; 71():33-42. PubMed ID: 30174301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA damage recognition during nucleotide excision repair in mammalian cells.
    Wood RD
    Biochimie; 1999; 81(1-2):39-44. PubMed ID: 10214908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistence of repair proteins at unrepaired DNA damage distinguishes diseases with ERCC2 (XPD) mutations: cancer-prone xeroderma pigmentosum vs. non-cancer-prone trichothiodystrophy.
    Boyle J; Ueda T; Oh KS; Imoto K; Tamura D; Jagdeo J; Khan SG; Nadem C; Digiovanna JJ; Kraemer KH
    Hum Mutat; 2008 Oct; 29(10):1194-208. PubMed ID: 18470933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular anatomy of the human excision nuclease assembled at sites of DNA damage.
    Reardon JT; Sancar A
    Mol Cell Biol; 2002 Aug; 22(16):5938-45. PubMed ID: 12138203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Order of assembly of human DNA repair excision nuclease.
    Wakasugi M; Sancar A
    J Biol Chem; 1999 Jun; 274(26):18759-68. PubMed ID: 10373492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis of TFIIH activation for nucleotide excision repair.
    Kokic G; Chernev A; Tegunov D; Dienemann C; Urlaub H; Cramer P
    Nat Commun; 2019 Jun; 10(1):2885. PubMed ID: 31253769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel functional interactions between nucleotide excision DNA repair proteins influencing the enzymatic activities of TFIIH, XPG, and ERCC1-XPF.
    Winkler GS; Sugasawa K; Eker AP; de Laat WL; Hoeijmakers JH
    Biochemistry; 2001 Jan; 40(1):160-5. PubMed ID: 11141066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism and regulation of DNA damage recognition in mammalian nucleotide excision repair.
    Sugasawa K
    Enzymes; 2019; 45():99-138. PubMed ID: 31627884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A scanning-to-incision switch in TFIIH-XPG induced by DNA damage licenses nucleotide excision repair.
    Bralić A; Tehseen M; Sobhy MA; Tsai CL; Alhudhali L; Yi G; Yu J; Yan C; Ivanov I; Tsutakawa SE; Tainer JA; Hamdan SM
    Nucleic Acids Res; 2023 Feb; 51(3):1019-1033. PubMed ID: 36477609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xeroderma pigmentosum and molecular cloning of DNA repair genes.
    Boulikas T
    Anticancer Res; 1996; 16(2):693-708. PubMed ID: 8687116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of XPB helicase on recruitment and redistribution of nucleotide excision repair proteins at sites of UV-induced DNA damage.
    Oh KS; Imoto K; Boyle J; Khan SG; Kraemer KH
    DNA Repair (Amst); 2007 Sep; 6(9):1359-70. PubMed ID: 17509950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical analysis of the damage recognition process in nucleotide excision repair.
    You JS; Wang M; Lee SH
    J Biol Chem; 2003 Feb; 278(9):7476-85. PubMed ID: 12486030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helicases required for nucleotide excision repair: structure, function and mechanism.
    He F; Bravo M; Fan L
    Enzymes; 2023; 54():273-304. PubMed ID: 37945175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.