BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37076829)

  • 1. Optimizing yeast for high-level production of kaempferol and quercetin.
    Tartik M; Liu J; Mohedano MT; Mao J; Chen Y
    Microb Cell Fact; 2023 Apr; 22(1):74. PubMed ID: 37076829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae.
    Duan L; Ding W; Liu X; Cheng X; Cai J; Hua E; Jiang H
    Microb Cell Fact; 2017 Sep; 16(1):165. PubMed ID: 28950867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic Engineering of Saccharomyces cerevisiae for De Novo Production of Kaempferol.
    Lyu X; Zhao G; Ng KR; Mark R; Chen WN
    J Agric Food Chem; 2019 May; 67(19):5596-5606. PubMed ID: 30957490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering de novo anthocyanin production in Saccharomyces cerevisiae.
    Levisson M; Patinios C; Hein S; de Groot PA; Daran JM; Hall RD; Martens S; Beekwilder J
    Microb Cell Fact; 2018 Jul; 17(1):103. PubMed ID: 29970082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of yeast for fermentative production of flavonoids.
    Rodriguez A; Strucko T; Stahlhut SG; Kristensen M; Svenssen DK; Forster J; Nielsen J; Borodina I
    Bioresour Technol; 2017 Dec; 245(Pt B):1645-1654. PubMed ID: 28634125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating heterologous pathways and optimizing fermentation conditions for biosynthesis of kaempferol and astragalin from naringenin in Escherichia coli.
    Pei J; Chen A; Dong P; Shi X; Zhao L; Cao F; Tang F
    J Ind Microbiol Biotechnol; 2019 Feb; 46(2):171-186. PubMed ID: 30617726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae.
    Trantas E; Panopoulos N; Ververidis F
    Metab Eng; 2009 Nov; 11(6):355-66. PubMed ID: 19631278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient preparation and biocatalytic synthesis of novel C-glycosylflavonols kaempferol 8-C-glucoside and quercetin 8-C-glucoside through using resting cells and macroporous resins.
    Wu Y; Wang H; Liu Y; Zhao L; Pei J
    Biotechnol Biofuels Bioprod; 2022 Nov; 15(1):129. PubMed ID: 36434691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro glucuronidation of kaempferol and quercetin by human UGT-1A9 microsomes.
    Oliveira EJ; Watson DG
    FEBS Lett; 2000 Apr; 471(1):1-6. PubMed ID: 10760502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of flavanone 3-hydroxylase gene and flavonoid accumulation in two chemotyped safflower lines in response to methyl jasmonate stimulation.
    Tu Y; Liu F; Guo D; Fan L; Zhu Z; Xue Y; Gao Y; Guo M
    BMC Plant Biol; 2016 Jun; 16(1):132. PubMed ID: 27286810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Pinocembrin Biosynthesis in
    Tous Mohedano M; Mao J; Chen Y
    ACS Synth Biol; 2023 Jan; 12(1):144-152. PubMed ID: 36534476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae.
    Koopman F; Beekwilder J; Crimi B; van Houwelingen A; Hall RD; Bosch D; van Maris AJ; Pronk JT; Daran JM
    Microb Cell Fact; 2012 Dec; 11():155. PubMed ID: 23216753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing Oleaginous Yeast Cell Factories for Flavonoids and Hydroxylated Flavonoids Biosynthesis.
    Lv Y; Marsafari M; Koffas M; Zhou J; Xu P
    ACS Synth Biol; 2019 Nov; 8(11):2514-2523. PubMed ID: 31622552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raising the production of phloretin by alleviation of by-product of chalcone synthase in the engineered yeast.
    Jiang C; Liu X; Chen X; Cai Y; Zhuang Y; Liu T; Zhu X; Wang H; Liu Y; Jiang H; Wang W
    Sci China Life Sci; 2020 Nov; 63(11):1734-1743. PubMed ID: 32347474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of rat cytochrome 1A1 in the biotransformation of kaempferol to quercetin: relevance to the genotoxicity of kaempferol.
    Silva ID; Rodrigues AS; Gaspar J; Maia R; Laires A; Rueff J
    Mutagenesis; 1997 Sep; 12(5):383-90. PubMed ID: 9379919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories.
    Liu Q; Liu Y; Li G; Savolainen O; Chen Y; Nielsen J
    Nat Commun; 2021 Oct; 12(1):6085. PubMed ID: 34667183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-phase extraction and gas chromatography-mass spectrometry determination of kaempferol and quercetin in human urine after consumption of Ginkgo biloba tablets.
    Watson DG; Oliveira EJ
    J Chromatogr B Biomed Sci Appl; 1999 Feb; 723(1-2):203-10. PubMed ID: 10080647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery and Validation of a Novel Step Catalyzed by
    Jan R; Asaf S; Paudel S; Lubna ; Lee S; Kim KM
    Biology (Basel); 2021 Jan; 10(1):. PubMed ID: 33418890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in Phenylpropanoid and Trichothecene Production by Fusarium culmorum and F. graminearum Sensu Stricto via Exposure to Flavonoids.
    Bilska K; Stuper-Szablewska K; Kulik T; Buśko M; Załuski D; Jurczak S; Perkowski J
    Toxins (Basel); 2018 Mar; 10(3):. PubMed ID: 29510600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of quercetin and kaempferol by rat hepatocytes and the identification of flavonoid glycosides in human plasma.
    Oliveira EJ; Watson DG; Grant MH
    Xenobiotica; 2002 Apr; 32(4):279-87. PubMed ID: 12028662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.