These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 37077371)
1. Plant Hu Z; Shi J; Feng S; Wu X; Shao S; Shi K Hortic Res; 2023 Jan; 10(1):uhac242. PubMed ID: 37077371 [TBL] [Abstract][Full Text] [Related]
2. Arabidopsis AtERF15 positively regulates immunity against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea. Zhang H; Huang L; Dai Y; Liu S; Hong Y; Tian L; Huang L; Cao Z; Li D; Song F Front Plant Sci; 2015; 6():686. PubMed ID: 26388886 [TBL] [Abstract][Full Text] [Related]
3. Virus-Induced Gene Silencing-Based Functional Analyses Revealed the Involvement of Several Putative Trehalose-6-Phosphate Synthase/Phosphatase Genes in Disease Resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in Tomato. Zhang H; Hong Y; Huang L; Liu S; Tian L; Dai Y; Cao Z; Huang L; Li D; Song F Front Plant Sci; 2016; 7():1176. PubMed ID: 27540389 [TBL] [Abstract][Full Text] [Related]
4. The silencing of DEK reduced disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 based on virus-induced gene silencing analysis in tomato. Zhang H; Yan M; Deng R; Song F; Jiang M Gene; 2020 Feb; 727():144245. PubMed ID: 31715302 [TBL] [Abstract][Full Text] [Related]
5. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. Zhang Y; Li D; Zhang H; Hong Y; Huang L; Liu S; Li X; Ouyang Z; Song F BMC Plant Biol; 2015 Oct; 15():252. PubMed ID: 26490733 [TBL] [Abstract][Full Text] [Related]
6. Proteomics and functional analyses of Arabidopsis nitrilases involved in the defense response to microbial pathogens. Choi du S; Lim CW; Hwang BK Planta; 2016 Aug; 244(2):449-65. PubMed ID: 27095107 [TBL] [Abstract][Full Text] [Related]
7. An Essential Role of Mitochondrial α-Ketoglutarate Dehydrogenase E2 in the Basal Immune Response Against Bacterial Pathogens in Tomato. Ma Q; Liu Y; Fang H; Wang P; Ahammed GJ; Zai W; Shi K Front Plant Sci; 2020; 11():579772. PubMed ID: 33193523 [TBL] [Abstract][Full Text] [Related]
8. Heterologous expression of Chinese wild grapevine VqERFs in Arabidopsis thaliana enhance resistance to Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinerea. Wang L; Liu W; Wang Y Plant Sci; 2020 Apr; 293():110421. PubMed ID: 32081269 [TBL] [Abstract][Full Text] [Related]
9. Wang Y; Yuan S; Shao C; Zhu W; Xiao D; Zhang C; Hou X; Li Y Phytopathology; 2022 Dec; 112(12):2523-2537. PubMed ID: 35852468 [TBL] [Abstract][Full Text] [Related]
10. Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance. Li X; Huang L; Zhang Y; Ouyang Z; Hong Y; Zhang H; Li D; Song F BMC Plant Biol; 2014 Oct; 14():286. PubMed ID: 25348703 [TBL] [Abstract][Full Text] [Related]
11. SKIP Silencing Decreased Disease Resistance Against Zhang H; Yin L; Song F; Jiang M Front Plant Sci; 2020; 11():593267. PubMed ID: 33381133 [TBL] [Abstract][Full Text] [Related]
12. The SA-dependent defense pathway is active against different pathogens in tomato and tobacco. Achuo AE; Audenaert K; Meziane H; Höfte M Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(2):149-57. PubMed ID: 12701417 [TBL] [Abstract][Full Text] [Related]
13. Differential Response of Tomato Plants to the Application of Three Morán-Diez ME; Tranque E; Bettiol W; Monte E; Hermosa R Plants (Basel); 2020 May; 9(5):. PubMed ID: 32422955 [No Abstract] [Full Text] [Related]
14. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Wang X; Basnayake BM; Zhang H; Li G; Li W; Virk N; Mengiste T; Song F Mol Plant Microbe Interact; 2009 Oct; 22(10):1227-38. PubMed ID: 19737096 [TBL] [Abstract][Full Text] [Related]
15. Tomato SlERF.A1, SlERF.B4, SlERF.C3 and SlERF.A3, Members of B3 Group of ERF Family, Are Required for Resistance to Ouyang Z; Liu S; Huang L; Hong Y; Li X; Huang L; Zhang Y; Zhang H; Li D; Song F Front Plant Sci; 2016; 7():1964. PubMed ID: 28083004 [TBL] [Abstract][Full Text] [Related]
17. An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanum lycopersicum, and identifies 1-methyltryptophan as a metabolite involved in plant responses to Botrytis cinerea and Pseudomonas syringae. Camañes G; Scalschi L; Vicedo B; González-Bosch C; García-Agustín P Plant J; 2015 Oct; 84(1):125-39. PubMed ID: 26270176 [TBL] [Abstract][Full Text] [Related]
18. Priming of camalexin accumulation in induced systemic resistance by beneficial bacteria against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. Nguyen NH; Trotel-Aziz P; Villaume S; Rabenoelina F; Clément C; Baillieul F; Aziz A J Exp Bot; 2022 Jun; 73(11):3743-3757. PubMed ID: 35191984 [TBL] [Abstract][Full Text] [Related]
19. Co-silencing of tomato S-adenosylhomocysteine hydrolase genes confers increased immunity against Pseudomonas syringae pv. tomato DC3000 and enhanced tolerance to drought stress. Li X; Huang L; Hong Y; Zhang Y; Liu S; Li D; Zhang H; Song F Front Plant Sci; 2015; 6():717. PubMed ID: 26442031 [TBL] [Abstract][Full Text] [Related]
20. Enhanced Resistance of Nabi RBS; Rolly NK; Tayade R; Khan M; Shahid M; Yun BW Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]