BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37077500)

  • 1. Multiwavelength tissue-mimicking phantoms with tunable vessel pulsation.
    Jenne S; Zappe H
    J Biomed Opt; 2023 Apr; 28(4):045003. PubMed ID: 37077500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties.
    Chen AI; Balter ML; Chen MI; Gross D; Alam SK; Maguire TJ; Yarmush ML
    Med Phys; 2016 Jun; 43(6):3117-3131. PubMed ID: 27277058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printing-assisted fabrication of double-layered optical tissue phantoms for laser tattoo treatments.
    Kim H; Hau NT; Chae YG; Lee BI; Kang HW
    Lasers Surg Med; 2016 Apr; 48(4):392-9. PubMed ID: 26749358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of a noninvasive optical photoplethysmography imaging device with dynamic tissue phantom models.
    Nwafor CI; Plant KD; King DR; McCall BP; Squiers JJ; Fan W; DiMaio JM; Thatcher JE
    J Biomed Opt; 2017 Sep; 22(9):1-9. PubMed ID: 28895317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of a multilayer tissue-mimicking phantom with tunable optical properties to simulate vascular oxygenation and perfusion for optical imaging technology.
    Liu G; Huang K; Jia Q; Liu S; Shen S; Li J; Dong E; Lemaillet P; Allen DW; Xu RX
    Appl Opt; 2018 Aug; 57(23):6772-6780. PubMed ID: 30129625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Polydimethylsiloxane (PDMS) Pulsatile Vascular Tissue Phantoms for the In-Vitro Investigation of Light Tissue Interaction in Photoplethysmography.
    Nomoni M; May JM; Kyriacou PA
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and Characterization of Optical Tissue Phantoms Containing Macrostructure.
    Durkee MS; Nash LD; Nooshabadi F; Cirillo JD; Maitland DJ; Maitland KC
    J Vis Exp; 2018 Feb; (132):. PubMed ID: 29553502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Testing of Artificial Vessels and Tissues for Photoplethysmography Phantoms.
    May JM; Nomoni M; Budidha K; Choi C; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():629-632. PubMed ID: 36086013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polydimethylsiloxane tissue-mimicking phantoms with tunable optical properties.
    Goldfain AM; Lemaillet P; Allen DW; Briggman KA; Hwang J
    J Biomed Opt; 2021 Nov; 27(7):. PubMed ID: 34796707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabricating Novel PDMS Vessels for Phantoms in Photoplethysmography Investigations.
    Nomoni M; May JM; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4458-4461. PubMed ID: 33018984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Epidermal Mimicry from Ultraviolet to Infrared Wavelengths.
    Caratenuto A; Li S; Wan Y; Zheng Y
    ACS Appl Bio Mater; 2022 Nov; 5(11):5231-5239. PubMed ID: 36331184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo stiffness measurement of epidermis, dermis, and hypodermis using broadband Rayleigh-wave optical coherence elastography.
    Feng X; Li GY; Ramier A; Eltony AM; Yun SH
    Acta Biomater; 2022 Jul; 146():295-305. PubMed ID: 35470076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths.
    Greening GJ; Istfan R; Higgins LM; Balachandran K; Roblyer D; Pierce MC; Muldoon TJ
    J Biomed Opt; 2014; 19(11):115002. PubMed ID: 25387084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Birefringent tissue-mimicking phantom for polarization-sensitive optical coherence tomography imaging.
    Chang S; Handwerker J; Giannico GA; Chang SS; Bowden AK
    J Biomed Opt; 2022 Jan; 27(7):. PubMed ID: 35064658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a portable phantom device to simulate tissue oxygenation and blood perfusion.
    Lv X; Chen H; Liu G; Shen S; Wu Q; Hu C; Li J; Dong E; Xu RX
    Appl Opt; 2018 May; 57(14):3938-3946. PubMed ID: 29791363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue mimicking materials and finger phantom design for pulse oximetry.
    Rodriguez AJ; Vasudevan S; Farahmand M; Weininger S; Vogt WC; Scully CG; Ramella-Roman J; Pfefer TJ
    Biomed Opt Express; 2024 Apr; 15(4):2308-2327. PubMed ID: 38633081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Pulsatile Optical Tissue Phantom for the Investigation of Light-Tissue Interaction in Reflectance Photoplethysmography.
    Nomoni M; May JM; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3204-3207. PubMed ID: 31946569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pipe Phantoms With Applications in Molecular Imaging and System Characterization.
    Wang S; Herbst EB; Pye SD; Moran CM; Hossack JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):39-52. PubMed ID: 27845659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Custom Wall-Less Cardiovascular Flow Phantoms with Tissue-Mimicking Gel.
    Laughlin ME; Stephens SE; Hestekin JA; Jensen MO
    Cardiovasc Eng Technol; 2022 Feb; 13(1):1-13. PubMed ID: 34080171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics.
    Kennedy GT; Lentsch GR; Trieu B; Ponticorvo A; Saager RB; Durkin AJ
    J Biomed Opt; 2017 Jul; 22(7):76013. PubMed ID: 28727869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.