BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37077513)

  • 1. Flood Hazard Zoning of Upper Awash River Basin, Ethiopia, Using the Analytical Hierarchy Process (AHP) as Compared to Sensitivity Analysis.
    Mekonnen TM; Mitiku AB; Woldemichael AT
    ScientificWorldJournal; 2023; 2023():1675634. PubMed ID: 37077513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of vulnerability to flood risk in the Padma River Basin using hydro-morphometric modeling and flood susceptibility mapping.
    Abrar MF; Iman YE; Mustak MB; Pal SK
    Environ Monit Assess; 2024 Jun; 196(7):661. PubMed ID: 38918209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AHP and TOPSIS based flood risk assessment- a case study of the Navsari City, Gujarat, India.
    Pathan AI; Girish Agnihotri P; Said S; Patel D
    Environ Monit Assess; 2022 Jun; 194(7):509. PubMed ID: 35713716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of geographical information system-based analytical hierarchy process modeling for flood susceptibility mapping of Krishna District in Andhra Pradesh.
    Penki R; Basina SS; Tanniru SR
    Environ Sci Pollut Res Int; 2023 Sep; 30(44):99062-99075. PubMed ID: 36087179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping flood vulnerability using an analytical hierarchy process (AHP) in the Metropolis of Mumbai.
    Mann R; Gupta A
    Environ Monit Assess; 2023 Nov; 195(12):1534. PubMed ID: 38008879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Urban flood susceptibility analysis of Saroor Nagar Watershed of India using Geomatics-based multi-criteria analysis framework.
    Vaddiraju SC; Talari R
    Environ Sci Pollut Res Int; 2023 Oct; 30(49):107021-107040. PubMed ID: 36520296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flood vulnerability assessment in the Jamuna river floodplain using multi-criteria decision analysis: A case study in Jamalpur district, Bangladesh.
    Nahin KTK; Islam SB; Mahmud S; Hossain I
    Heliyon; 2023 Mar; 9(3):e14520. PubMed ID: 37020948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coastal Flood risk assessment using ensemble multi-criteria decision-making with machine learning approaches.
    Asiri MM; Aldehim G; Alruwais N; Allafi R; Alzahrani I; Nouri AM; Assiri M; Ahmed NA
    Environ Res; 2024 Mar; 245():118042. PubMed ID: 38160971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping flood susceptibility with PROMETHEE multi-criteria analysis method.
    Plataridis K; Mallios Z
    Environ Sci Pollut Res Int; 2024 Jun; 31(28):41267-41289. PubMed ID: 38847951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial assessment of flood vulnerability and waterlogging extent in agricultural lands using RS-GIS and AHP technique-a case study of Patan district Gujarat, India.
    Gahalod NSS; Rajeev K; Pant PK; Binjola S; Yadav RL; Meena RL
    Environ Monit Assess; 2024 Mar; 196(4):338. PubMed ID: 38430346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. District flood vulnerability assessment using analytic hierarchy process (AHP) with historical flood events in Bhutan.
    Tempa K
    PLoS One; 2022; 17(6):e0270467. PubMed ID: 35749469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A geospatial approach for assessing urban flood risk zones in Chennai, Tamil Nadu, India.
    Bagyaraj M; Senapathi V; Chung SY; Gopalakrishnan G; Xiao Y; Karthikeyan S; Nadiri AA; Barzegar R
    Environ Sci Pollut Res Int; 2023 Sep; 30(45):100562-100575. PubMed ID: 37639084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flood hazard assessment in large plain basins with a scarce slope in the Pampean Plain, Argentina.
    Borzi G; Roig A; Tanjal C; Santucci L; Tejada Tejada M; Carol E
    Environ Monit Assess; 2021 Mar; 193(4):177. PubMed ID: 33751244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flood vulnerability of a few areas in the foothills of the Western Ghats: a comparison of AHP and F-AHP models.
    Senan CPC; Ajin RS; Danumah JH; Costache R; Arabameri A; Rajaneesh A; Sajinkumar KS; Kuriakose SL
    Stoch Environ Res Risk Assess; 2023; 37(2):527-556. PubMed ID: 35880038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flood risk mapping and analysis using an integrated framework of machine learning models and analytic hierarchy process.
    Bui QD; Luu C; Mai SH; Ha HT; Ta HT; Pham BT
    Risk Anal; 2022 Sep; ():. PubMed ID: 36088657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A geospatial analysis of flood risk zones in Cyprus: insights from statistical and multi-criteria decision analysis methods.
    Ghanem MAAN; Zaifoglu H
    Environ Sci Pollut Res Int; 2024 May; 31(22):32875-32900. PubMed ID: 38671266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial Intelligence in Geospatial Analysis for Flood Vulnerability Assessment: A Case of Dire Dawa Watershed, Awash Basin, Ethiopia.
    Tamiru H; Dinka MO
    ScientificWorldJournal; 2021; 2021():6128609. PubMed ID: 34853568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flood vulnerability assessment using GIS at Fetam watershed, upper Abbay basin, Ethiopia.
    Desalegn H; Mulu A
    Heliyon; 2021 Jan; 7(1):e05865. PubMed ID: 33506123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining the effect of urbanization on flood hazard zones in Kahramanmaras, Turkey, using flood hazard index and multi-criteria decision analysis.
    Dutal H
    Environ Monit Assess; 2022 Nov; 195(1):92. PubMed ID: 36352156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flood hazards and risk mapping using geospatial technologies in Jimma City, southwestern Ethiopia.
    Weday MA; Tabor KW; Gemeda DO
    Heliyon; 2023 Apr; 9(4):e14617. PubMed ID: 37095986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.