These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 37077632)
1. Improving in-season wheat yield prediction using remote sensing and additional agronomic traits as predictors. Gracia-Romero A; Rufo R; Gómez-Candón D; Soriano JM; Bellvert J; Yannam VRR; Gulino D; Lopes MS Front Plant Sci; 2023; 14():1063983. PubMed ID: 37077632 [TBL] [Abstract][Full Text] [Related]
2. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Hassan MA; Yang M; Rasheed A; Yang G; Reynolds M; Xia X; Xiao Y; He Z Plant Sci; 2019 May; 282():95-103. PubMed ID: 31003615 [TBL] [Abstract][Full Text] [Related]
3. Improving grain yield prediction through fusion of multi-temporal spectral features and agronomic trait parameters derived from UAV imagery. Zhou H; Yang J; Lou W; Sheng L; Li D; Hu H Front Plant Sci; 2023; 14():1217448. PubMed ID: 37908835 [TBL] [Abstract][Full Text] [Related]
4. Dataset of above and below ground traits assessed in Durum wheat cultivars grown under Mediterranean environments differing in water and temperature conditions. Rezzouk FZ; Gracia-Romero A; Kefauver SC; Nieto-Taladriz MT; Serret MD; Araus JL Data Brief; 2022 Feb; 40():107754. PubMed ID: 35005145 [TBL] [Abstract][Full Text] [Related]
5. Improving Wheat Yield Prediction Using Secondary Traits and High-Density Phenotyping Under Heat-Stressed Environments. Rahman MM; Crain J; Haghighattalab A; Singh RP; Poland J Front Plant Sci; 2021; 12():633651. PubMed ID: 34646280 [TBL] [Abstract][Full Text] [Related]
6. Using a Portable Active Sensor to Monitor Growth Parameters and Predict Grain Yield of Winter Wheat. Zhang J; Liu X; Liang Y; Cao Q; Tian Y; Zhu Y; Cao W; Liu X Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30841552 [TBL] [Abstract][Full Text] [Related]
7. Prediction of Crop Yield Using Phenological Information Extracted from Remote Sensing Vegetation Index. Ji Z; Pan Y; Zhu X; Wang J; Li Q Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671356 [TBL] [Abstract][Full Text] [Related]
8. Entropy Weight Ensemble Framework for Yield Prediction of Winter Wheat Under Different Water Stress Treatments Using Unmanned Aerial Vehicle-Based Multispectral and Thermal Data. Fei S; Hassan MA; Ma Y; Shu M; Cheng Q; Li Z; Chen Z; Xiao Y Front Plant Sci; 2021; 12():730181. PubMed ID: 34987529 [TBL] [Abstract][Full Text] [Related]
10. Predicting grain protein content of field-grown winter wheat with satellite images and partial least square algorithm. Tan C; Zhou X; Zhang P; Wang Z; Wang D; Guo W; Yun F PLoS One; 2020; 15(3):e0228500. PubMed ID: 32160185 [TBL] [Abstract][Full Text] [Related]
11. Integrating plant morphological traits with remote-sensed multispectral imageries for accurate corn grain yield prediction. Jang C; Namoi N; Wolske E; Wasonga D; Behnke G; Bowman ND; Lee DK PLoS One; 2024; 19(4):e0297027. PubMed ID: 38564609 [TBL] [Abstract][Full Text] [Related]
12. High-Throughput Field Phenotyping Traits of Grain Yield Formation and Nitrogen Use Efficiency: Optimizing the Selection of Vegetation Indices and Growth Stages. Prey L; Hu Y; Schmidhalter U Front Plant Sci; 2019; 10():1672. PubMed ID: 32010159 [TBL] [Abstract][Full Text] [Related]
13. Combining NDVI and Bacterial Blight Score to Predict Grain Yield in Field Pea. Zhao H; Pandey BR; Khansefid M; Khahrood HV; Sudheesh S; Joshi S; Kant S; Kaur S; Rosewarne GM Front Plant Sci; 2022; 13():923381. PubMed ID: 35837454 [TBL] [Abstract][Full Text] [Related]
14. Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat. Rutkoski J; Poland J; Mondal S; Autrique E; Pérez LG; Crossa J; Reynolds M; Singh R G3 (Bethesda); 2016 Sep; 6(9):2799-808. PubMed ID: 27402362 [TBL] [Abstract][Full Text] [Related]
15. Normalized Difference Vegetation Index as a tool for wheat yield estimation: a case study from Faisalabad, Pakistan. Sultana SR; Ali A; Ahmad A; Mubeen M; Zia-Ul-Haq M; Ahmad S; Ercisli S; Jaafar HZ ScientificWorldJournal; 2014; 2014():725326. PubMed ID: 25045744 [TBL] [Abstract][Full Text] [Related]
16. Modeling crop yield using NDVI-derived VGM metrics across different climatic regions in the USA. Shammi SA; Meng Q Int J Biometeorol; 2023 Jun; 67(6):1051-1062. PubMed ID: 37195358 [TBL] [Abstract][Full Text] [Related]
17. Multi-Year Mapping of Major Crop Yields in an Irrigation District from High Spatial and Temporal Resolution Vegetation Index. Yu B; Shang S Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30404139 [TBL] [Abstract][Full Text] [Related]
18. Use of consumer-grade cameras to assess wheat N status and grain yield. Fernández E; Gorchs G; Serrano L PLoS One; 2019; 14(2):e0211889. PubMed ID: 30768611 [TBL] [Abstract][Full Text] [Related]
19. Assessment of Vegetation Indices Derived by UAV Imagery for Durum Wheat Phenotyping under a Water Limited and Heat Stressed Mediterranean Environment. Kyratzis AC; Skarlatos DP; Menexes GC; Vamvakousis VF; Katsiotis A Front Plant Sci; 2017; 8():1114. PubMed ID: 28694819 [TBL] [Abstract][Full Text] [Related]
20. The spatial variability of NDVI within a wheat field: Information content and implications for yield and grain protein monitoring. Stoy PC; Khan AM; Wipf A; Silverman N; Powell SL PLoS One; 2022; 17(3):e0265243. PubMed ID: 35316290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]