These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 37077747)

  • 1. Machine learning-based in-hospital mortality risk prediction tool for intensive care unit patients with heart failure.
    Chen Z; Li T; Guo S; Zeng D; Wang K
    Front Cardiovasc Med; 2023; 10():1119699. PubMed ID: 37077747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases.
    Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S
    Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study.
    Li J; Liu S; Hu Y; Zhu L; Mao Y; Liu J
    J Med Internet Res; 2022 Aug; 24(8):e38082. PubMed ID: 35943767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Composite Indicator of Predicting Mortality Risk for Heart Failure Patients With Diabetes Admitted to Intensive Care Unit Based on Machine Learning.
    Yang B; Zhu Y; Lu X; Shen C
    Front Endocrinol (Lausanne); 2022; 13():917838. PubMed ID: 35846312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit.
    Huang T; Le D; Yuan L; Xu S; Peng X
    PLoS One; 2023; 18(1):e0280606. PubMed ID: 36701342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation.
    Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M
    Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models.
    Ye Z; An S; Gao Y; Xie E; Zhao X; Guo Z; Li Y; Shen N; Ren J; Zheng J
    Eur J Med Res; 2023 Jan; 28(1):33. PubMed ID: 36653875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms].
    Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factor analysis based on SHapley Additive exPlanations for sepsis-associated encephalopathy in ICU mortality prediction using XGBoost - a retrospective study based on two large database.
    Guo J; Cheng H; Wang Z; Qiao M; Li J; Lyu J
    Front Neurol; 2023; 14():1290117. PubMed ID: 38162445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction model of in-hospital mortality in intensive care unit patients with heart failure: machine learning-based, retrospective analysis of the MIMIC-III database.
    Li F; Xin H; Zhang J; Fu M; Zhou J; Lian Z
    BMJ Open; 2021 Jul; 11(7):e044779. PubMed ID: 34301649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning].
    Zhu M; Hu C; He Y; Qian Y; Tang S; Hu Q; Hao C
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Jul; 35(7):696-701. PubMed ID: 37545445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction model of in-hospital mortality in intensive care unit patients with cardiac arrest: a retrospective analysis of MIMIC -IV database based on machine learning.
    Sun Y; He Z; Ren J; Wu Y
    BMC Anesthesiol; 2023 May; 23(1):178. PubMed ID: 37231340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning prediction models and nomogram to predict the risk of in-hospital death for severe DKA: A clinical study based on MIMIC-IV, eICU databases, and a college hospital ICU.
    Xie W; Li Y; Meng X; Zhao M
    Int J Med Inform; 2023 Jun; 174():105049. PubMed ID: 37001474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prognostic Assessment of COVID-19 in the Intensive Care Unit by Machine Learning Methods: Model Development and Validation.
    Pan P; Li Y; Xiao Y; Han B; Su L; Su M; Li Y; Zhang S; Jiang D; Chen X; Zhou F; Ma L; Bao P; Xie L
    J Med Internet Res; 2020 Nov; 22(11):e23128. PubMed ID: 33035175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretable machine learning for predicting 28-day all-cause in-hospital mortality for hypertensive ischemic or hemorrhagic stroke patients in the ICU: a multi-center retrospective cohort study with internal and external cross-validation.
    Huang J; Chen H; Deng J; Liu X; Shu T; Yin C; Duan M; Fu L; Wang K; Zeng S
    Front Neurol; 2023; 14():1185447. PubMed ID: 37614971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A time-incorporated SOFA score-based machine learning model for predicting mortality in critically ill patients: A multicenter, real-world study.
    Liu Y; Gao K; Deng H; Ling T; Lin J; Yu X; Bo X; Zhou J; Gao L; Wang P; Hu J; Zhang J; Tong Z; Liu Y; Shi Y; Ke L; Gao Y; Li W
    Int J Med Inform; 2022 Jul; 163():104776. PubMed ID: 35512625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Twenty-eight-day in-hospital mortality prediction for elderly patients with ischemic stroke in the intensive care unit: Interpretable machine learning models.
    Huang J; Jin W; Duan X; Liu X; Shu T; Fu L; Deng J; Chen H; Liu G; Jiang Y; Liu Z
    Front Public Health; 2022; 10():1086339. PubMed ID: 36711330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Risk Model based on the Machine Learning Approach for Prediction of Mortality in the Respiratory Intensive Care Unit.
    Yan P; Huang S; Li Y; Chen T; Li X; Zhang Y; Wu H; Xu J; Xie G; Xie L; Mo G
    Curr Pharm Biotechnol; 2023; 24(13):1673-1681. PubMed ID: 36825694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A generalizable and interpretable model for mortality risk stratification of sepsis patients in intensive care unit.
    Zhuang J; Huang H; Jiang S; Liang J; Liu Y; Yu X
    BMC Med Inform Decis Mak; 2023 Sep; 23(1):185. PubMed ID: 37715194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of interpretable machine learning models to predict in-hospital prognosis of acute heart failure patients.
    Tanaka M; Kohjitani H; Yamamoto E; Morimoto T; Kato T; Yaku H; Inuzuka Y; Tamaki Y; Ozasa N; Seko Y; Shiba M; Yoshikawa Y; Yamashita Y; Kitai T; Taniguchi R; Iguchi M; Nagao K; Kawai T; Komasa A; Kawase Y; Morinaga T; Toyofuku M; Furukawa Y; Ando K; Kadota K; Sato Y; Kuwahara K; Okuno Y; Kimura T; Ono K;
    ESC Heart Fail; 2024 Oct; 11(5):2798-2812. PubMed ID: 38751135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.