These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37078049)

  • 1. Simultaneous photoplethysmography and blood flow measurements towards the estimation of blood pressure using speckle contrast optical spectroscopy.
    Garrett A; Kim B; Sie EJ; Gurel NZ; Marsili F; Boas DA; Roblyer D
    Biomed Opt Express; 2023 Apr; 14(4):1594-1607. PubMed ID: 37078049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoplethysmography Fast Upstroke Time Intervals Can Be Useful Features for Cuff-Less Measurement of Blood Pressure Changes in Humans.
    Natarajan K; Block RC; Yavarimanesh M; Chandrasekhar A; Mestha LK; Inan OT; Hahn JO; Mukkamala R
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):53-62. PubMed ID: 34097603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: normotensive subject study.
    Shin H; Min SD
    Biomed Eng Online; 2017 Jan; 16(1):10. PubMed ID: 28086939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ventilation-Induced Modulation of Pulse Oximeter Waveforms: A Method for the Assessment of Early Changes in Intravascular Volume During Spinal Fusion Surgery in Pediatric Patients.
    Alian AA; Atteya G; Gaal D; Golembeski T; Smith BG; Dai F; Silverman DG; Shelley K
    Anesth Analg; 2016 Aug; 123(2):346-56. PubMed ID: 27284998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood.
    Scully CG; Selvaraj N; Romberg FW; Wardhan R; Ryan J; Florian JP; Silverman DG; Shelley KH; Chon KH
    Anesth Analg; 2012 Jul; 115(1):74-81. PubMed ID: 22543068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of cerebral blood flow velocity during breath-hold challenge using artificial neural networks.
    Al-Abed MA; Al-Bashir AK; Al-Rawashdeh A; Alex RM; Zhang R; Watenpaugh DE; Behbehani K
    Comput Biol Med; 2019 Dec; 115():103508. PubMed ID: 31698237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of central hypovolemia on photoplethysmographic waveform parameters in healthy volunteers. Part 1: time domain analysis.
    Alian AA; Galante NJ; Stachenfeld NS; Silverman DG; Shelley KH
    J Clin Monit Comput; 2011 Dec; 25(6):377-85. PubMed ID: 22051898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of different contacting pressure on the transfer function between finger photoplethysmographic and radial blood pressure waveforms.
    Hsiu H; Hsu CL; Wu TL
    Proc Inst Mech Eng H; 2011 Jun; 225(6):575-83. PubMed ID: 22034741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of central hypovolemia on photoplethysmographic waveform parameters in healthy volunteers part 2: frequency domain analysis.
    Alian AA; Galante NJ; Stachenfeld NS; Silverman DG; Shelley KH
    J Clin Monit Comput; 2011 Dec; 25(6):387-96. PubMed ID: 22057245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplitude and phase measurements from harmonic analysis may lead to new physiologic insights: lower body negative pressure photoplethysmographic waveforms as an example.
    Alian A; Shelley K; Wu HT
    J Clin Monit Comput; 2023 Feb; 37(1):127-137. PubMed ID: 35896756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systolic blood pressure estimation using PPG and ECG during physical exercise.
    Sun S; Bezemer R; Long X; Muehlsteff J; Aarts RM
    Physiol Meas; 2016 Dec; 37(12):2154-2169. PubMed ID: 27841157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of photoplethysmographic waveforms with application of antihypertensive medication in hypertensive patients.
    Hu Y; Hu A; Song S
    Ann Noninvasive Electrocardiol; 2022 May; 27(3):e12941. PubMed ID: 35239217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cuffless and Continuous Blood Pressure Estimation From PPG Signals Using Recurrent Neural Networks.
    El Hajj C; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4269-4272. PubMed ID: 33018939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach.
    Athaya T; Choi S
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and
    Dunn CE; Lertsakdadet B; Crouzet C; Bahani A; Choi B
    Biomed Opt Express; 2018 Sep; 9(9):4306-4316. PubMed ID: 30615714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating and Visualizing the Contribution of ECG Characteristic Waveforms for PPG-Based Blood Pressure Estimation.
    Ma G; Chen Y; Zhu W; Zheng L; Tang H; Yu Y; Wang L
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of the Phenomena Affecting Reflective Arterial Photoplethysmography.
    Rovas G; Bikia V; Stergiopulos N
    Bioengineering (Basel); 2023 Apr; 10(4):. PubMed ID: 37106647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood pressure assessment with in-ear photoplethysmography.
    Xing X; Ma Z; Xu S; Zhang M; Zhao W; Song M; Dong WF
    Physiol Meas; 2021 Nov; 42(10):. PubMed ID: 34571491
    [No Abstract]   [Full Text] [Related]  

  • 20. Noninvasive blood oxygen, heartbeat rate, and blood pressure parameter monitoring by photoplethysmography signals.
    Ku CJ; Wang Y; Chang CY; Wu MT; Dai ST; Liao LD
    Heliyon; 2022 Nov; 8(11):e11698. PubMed ID: 36458306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.