BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37078401)

  • 1. Nano-Impact Single-Entity Electrochemistry Enables Plasmon-Enhanced Electrocatalysis.
    Ganguli S; Zhao Z; Parlak O; Hattori Y; Sá J; Sekretareva A
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202302394. PubMed ID: 37078401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Nanoparticle Ensembles to Single Nanoparticles: Techniques for the Investigation of Plasmon Enhanced Electrochemistry.
    Liang Z; Li J; Zhou YG
    Chemistry; 2022 Sep; 28(53):e202201489. PubMed ID: 35770856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Plasmon-Accelerated Electrochemical Reaction on Gold Nanoparticles.
    Wang C; Nie XG; Shi Y; Zhou Y; Xu JJ; Xia XH; Chen HY
    ACS Nano; 2017 Jun; 11(6):5897-5905. PubMed ID: 28494145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Electrochemistry of Single Plasmonic Nanoparticles.
    Zhang W; Li J; Xia XH; Zhou YG
    Angew Chem Int Ed Engl; 2022 Feb; 61(8):e202115819. PubMed ID: 34890086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Nanoparticle Electrochemistry through Immobilization and Collision.
    Anderson TJ; Zhang B
    Acc Chem Res; 2016 Nov; 49(11):2625-2631. PubMed ID: 27730817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemistry on a localized surface plasmon resonance sensor.
    Sannomiya T; Dermutz H; Hafner C; Vörös J; Dahlin AB
    Langmuir; 2010 May; 26(10):7619-26. PubMed ID: 20020724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-enhanced electrochemical oxidation of 4-(hydroxymethyl)benzoic acid.
    Qiu J; Boskin D; Oleson D; Wu W; Anderson M
    J Chem Phys; 2022 Aug; 157(8):081101. PubMed ID: 36049998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unveiling the Solvent Effect in Plasmon Enhanced Electrochemistry
    Liang Z; Xu W; Li J; Lin C; Zhang W; Liu W; Xia XH; Zhou YG
    Nano Lett; 2023 Dec; 23(23):10871-10878. PubMed ID: 37955520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon-Assisted Ammonia Electrosynthesis.
    Contreras E; Nixon R; Litts C; Zhang W; Alcorn FM; Jain PK
    J Am Chem Soc; 2022 Jun; 144(24):10743-10751. PubMed ID: 35671395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiconducting Nanoparticles: Single Entity Electrochemistry and Photoelectrochemistry.
    Mathuri S; Zhu Y; Margoni MM; Li X
    Front Chem; 2021; 9():688320. PubMed ID: 34150719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hot or Not? Reassessing Mechanisms of Photocurrent Generation in Plasmon-Enhanced Electrocatalysis.
    Bagnall AJ; Ganguli S; Sekretareva A
    Angew Chem Int Ed Engl; 2024 Feb; 63(7):e202314352. PubMed ID: 38009712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Imaging of Oxidation and Reduction of Single Gold Nanoparticles and Their Surface Structural Dynamics.
    Garcia A; Wang S; Tao N; Shan X; Wang Y
    ACS Sens; 2021 Feb; 6(2):502-507. PubMed ID: 33373199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The coupling of localized surface plasmon resonance-based photoelectrochemistry and nanoparticle size effect: towards novel plasmonic photoelectrochemical biosensing.
    Zhao WW; Tian CY; Xu JJ; Chen HY
    Chem Commun (Camb); 2012 Jan; 48(6):895-7. PubMed ID: 22143463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting plasmon-enhanced electrochemistry by
    Wang Y; Sang X; Wu F; Pang Y; Xu G; Yuan Y; Hsu HY; Niu W
    Nanoscale; 2023 Nov; 15(46):18901-18909. PubMed ID: 37975296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating the Roles of Local and Nonlocal Rate Enhancement Mechanisms in Plasmonic Catalysis.
    Elias RC; Linic S
    J Am Chem Soc; 2022 Nov; 144(43):19990-19998. PubMed ID: 36279510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutual promotion of electrochemical-localized surface plasmon resonance on nanochip for sensitive sialic acid detection.
    Li S; Liu J; Lu Y; Zhu L; Li C; Hu L; Li J; Jiang J; Low S; Liu Q
    Biosens Bioelectron; 2018 Oct; 117():32-39. PubMed ID: 29885577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy.
    Novo C; Funston AM; Mulvaney P
    Nat Nanotechnol; 2008 Oct; 3(10):598-602. PubMed ID: 18838998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Plasmon-Enhanced Electrochemistry for Enabling Ultrasensitive and Label-Free Detection of Circulating Tumor Cells in Blood.
    Wang SS; Zhao XP; Liu FF; Younis MR; Xia XH; Wang C
    Anal Chem; 2019 Apr; 91(7):4413-4420. PubMed ID: 30816698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.