These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 37078401)

  • 21. Size-Dependent Electrocatalytic Activity of Free Gold Nanoparticles for the Glucose Oxidation Reaction.
    Hebié S; Napporn TW; Morais C; Kokoh KB
    Chemphyschem; 2016 May; 17(10):1454-62. PubMed ID: 26879605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Signal-enhanced strategy for ratiometric aptasensing of aflatoxin B1: Plasmon-modulated competition between photoelectrochemistry-driven and electrochemistry-driven redox of methylene blue.
    Li Y; Liu D; Meng S; Dong N; Liu C; Wei Y; You T
    Biosens Bioelectron; 2022 Dec; 218():114759. PubMed ID: 36219906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hot electron and thermal effects in plasmonic catalysis of nanocrystal transformation.
    Zhang C; Kong T; Fu Z; Zhang Z; Zheng H
    Nanoscale; 2020 Apr; 12(16):8768-8774. PubMed ID: 32101225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis.
    Li S; Miao P; Zhang Y; Wu J; Zhang B; Du Y; Han X; Sun J; Xu P
    Adv Mater; 2021 Feb; 33(6):e2000086. PubMed ID: 32201994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New insights into electrocatalysis based on plasmon resonance for the real-time monitoring of catalytic events on single gold nanorods.
    Jing C; Rawson FJ; Zhou H; Shi X; Li WH; Li DW; Long YT
    Anal Chem; 2014 Jun; 86(11):5513-8. PubMed ID: 24766541
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of Silver-Palladium Alloyed Nanoparticles for Plasmonic Catalysis under Visible-Light Illumination.
    Peiris E; Hanauer S; Knapas K; Camargo PHC
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32894264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Important Considerations in Plasmon-Enhanced Electrochemical Conversion at Voltage-Biased Electrodes.
    Corson ER; Creel EB; Kostecki R; McCloskey BD; Urban JJ
    iScience; 2020 Mar; 23(3):100911. PubMed ID: 32113155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hot Hole Collection and Photoelectrochemical CO
    DuChene JS; Tagliabue G; Welch AJ; Cheng WH; Atwater HA
    Nano Lett; 2018 Apr; 18(4):2545-2550. PubMed ID: 29522350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmon-Induced Electrocatalysis with Multi-Component Nanostructures.
    Subramanian P; Meziane D; Wojcieszak R; Dumeignil F; Boukherroub R; Szunerits S
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30586856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical responses and electrocatalysis at single au nanoparticles.
    Li Y; Cox JT; Zhang B
    J Am Chem Soc; 2010 Mar; 132(9):3047-54. PubMed ID: 20148588
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing Plasmonic Hot Electron Energy on Ag Surface by Amine Coordination.
    Wang Y; Li Y; Yang X; Wang T; Du X; Zhu A; Xie W; Xie W
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202318817. PubMed ID: 38224169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmon-Driven Electrochemical Methanol Oxidation on Gold Nanohole Electrodes.
    Pang L; Barras A; Mishyn V; Heyte S; Heuson E; Oubaha H; Sandu G; Melinte S; Boukherroub R; Szunerits S
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50426-50432. PubMed ID: 33119260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption of ozone and plasmonic properties of gold hydrosol: the effect of the nanoparticle size.
    Ershov BG; Abkhalimov EV; Roldughin VI; Rudoy VM; Dement'eva OV; Solovov RD
    Phys Chem Chem Phys; 2015 Jul; 17(28):18431-6. PubMed ID: 26106813
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces.
    Yu Y; Wijesekara KD; Xi X; Willets KA
    ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Current research on single-entity electrochemistry for soft nanoparticle detection: Introduction to detection methods and applications.
    Nguyen THT; Lee J; Kim HY; Nam KM; Kim BK
    Biosens Bioelectron; 2020 Mar; 151():111999. PubMed ID: 31999594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmonic Gold Nanoparticles (AuNPs): Properties, Synthesis and their Advanced Energy, Environmental and Biomedical Applications.
    Sarfraz N; Khan I
    Chem Asian J; 2021 Apr; 16(7):720-742. PubMed ID: 33440045
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonic hot carrier injection from single gold nanoparticles into topological insulator Bi
    Nweze C; Glier TE; Rerrer M; Scheitz S; Huang Y; Zierold R; Blick R; Parak WJ; Huse N; Rübhausen M
    Nanoscale; 2023 Jan; 15(2):507-514. PubMed ID: 36413110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Localized surface plasmon resonance for enhanced electrocatalysis.
    Zhao J; Xue S; Ji R; Li B; Li J
    Chem Soc Rev; 2021 Nov; 50(21):12070-12097. PubMed ID: 34533143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical Interface Damping of Surface Plasmon Resonances.
    Lee SA; Link S
    Acc Chem Res; 2021 Apr; 54(8):1950-1960. PubMed ID: 33788547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.