These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Properties of polylactide inks for solvent-cast printing of three-dimensional freeform microstructures. Guo SZ; Heuzey MC; Therriault D Langmuir; 2014 Feb; 30(4):1142-50. PubMed ID: 24410099 [TBL] [Abstract][Full Text] [Related]
4. Balancing Functionality and Printability: High-Loading Polymer Resins for Direct Ink Writing. Legett SA; Torres X; Schmalzer AM; Pacheco A; Stockdale JR; Talley S; Robison T; Labouriau A Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365651 [TBL] [Abstract][Full Text] [Related]
5. Effect of Oil Content on the Printability of Coconut Cream. Lee CP; Hoo JY; Hashimoto M Int J Bioprint; 2021; 7(2):354. PubMed ID: 33997437 [TBL] [Abstract][Full Text] [Related]
6. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds. Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740 [TBL] [Abstract][Full Text] [Related]
7. Effect of Hydrocolloids on Rheological Properties and Printability of Vegetable Inks for 3D Food Printing. Kim HW; Lee JH; Park SM; Lee MH; Lee IW; Doh HS; Park HJ J Food Sci; 2018 Dec; 83(12):2923-2932. PubMed ID: 30506688 [TBL] [Abstract][Full Text] [Related]
8. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks. Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047 [TBL] [Abstract][Full Text] [Related]
9. Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing. Huan S; Ajdary R; Bai L; Klar V; Rojas OJ Biomacromolecules; 2019 Feb; 20(2):635-644. PubMed ID: 30240194 [TBL] [Abstract][Full Text] [Related]
10. Chitosan-based electroconductive inks without chemical reaction for cost-effective and versatile 3D printing for electromagnetic interference (EMI) shielding and strain-sensing applications. Sanandiya ND; Pai AR; Seyedin S; Tang F; Thomas S; Xie F Carbohydr Polym; 2024 Aug; 337():122161. PubMed ID: 38710576 [TBL] [Abstract][Full Text] [Related]
11. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization. Tran HN; Kim IG; Kim JH; Chung EJ; Noh I Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708 [TBL] [Abstract][Full Text] [Related]
12. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs. Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905 [TBL] [Abstract][Full Text] [Related]
13. The Effects of Solid Particle Containing Inks on the Printing Quality of Porous Pharmaceutical Structures Fabricated by 3D Semi-Solid Extrusion Printing. Teoh XY; Zhang B; Belton P; Chan SY; Qi S Pharm Res; 2022 Jun; 39(6):1267-1279. PubMed ID: 35661083 [TBL] [Abstract][Full Text] [Related]
14. 3D printing of tough hydrogels based on metal coordination with a two-step crosslinking strategy. Guo G; Wu Y; Du C; Yin J; Wu ZL; Zheng Q; Qian J J Mater Chem B; 2022 Mar; 10(13):2126-2134. PubMed ID: 35191448 [TBL] [Abstract][Full Text] [Related]
15. Embedded Core-Shell 3D Printing (eCS3DP) with Low-Viscosity Polysiloxanes. Karyappa R; Goh WH; Hashimoto M ACS Appl Mater Interfaces; 2022 Sep; 14(36):41520-41530. PubMed ID: 36048005 [TBL] [Abstract][Full Text] [Related]
16. A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks. Yuk H; Zhao X Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29239049 [TBL] [Abstract][Full Text] [Related]
17. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091 [TBL] [Abstract][Full Text] [Related]
18. Eucalyptus bleached kraft pulp-ionic liquid inks for 3D printing of ionogels and hydrogels. Hopson C; Rigual V; Alonso MV; Oliet M; Rodriguez F Carbohydr Polym; 2023 Aug; 313():120897. PubMed ID: 37182980 [TBL] [Abstract][Full Text] [Related]
19. Study of sacrificial ink-assisted embedded printing for 3D perfusable channel creation for biomedical applications. Ren B; Song K; Sanikommu AR; Chai Y; Longmire MA; Chai W; Murfee WL; Huang Y Appl Phys Rev; 2022 Mar; 9(1):011408. PubMed ID: 35242266 [TBL] [Abstract][Full Text] [Related]
20. 3D Freeform Printing of Nanocomposite Hydrogels through Chen S; Jang TS; Pan HM; Jung HD; Sia MW; Xie S; Hang Y; Chong SKM; Wang D; Song J Int J Bioprint; 2020; 6(2):258. PubMed ID: 32782988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]