These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces. Yu Y; Wijesekara KD; Xi X; Willets KA ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695 [TBL] [Abstract][Full Text] [Related]
6. Time-dependent Kohn-Sham electron dynamics coupled with nonequilibrium plasmonic response via atomistic electromagnetic model. Huang X; Zhang W; Liang W J Chem Phys; 2024 Jun; 160(21):. PubMed ID: 38828813 [TBL] [Abstract][Full Text] [Related]
7. Transferable Dynamic Molecular Charge Assignment Using Deep Neural Networks. Nebgen B; Lubbers N; Smith JS; Sifain AE; Lokhov A; Isayev O; Roitberg AE; Barros K; Tretiak S J Chem Theory Comput; 2018 Sep; 14(9):4687-4698. PubMed ID: 30064217 [TBL] [Abstract][Full Text] [Related]
8. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
9. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications. Lee H; Park Y; Song K; Park JY Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156 [TBL] [Abstract][Full Text] [Related]
10. Investigation of plasmon relaxation mechanisms using nonadiabatic molecular dynamics. Wu X; Liu B; Frauenheim T; Tretiak S; Yam C; Zhang Y J Chem Phys; 2022 Dec; 157(21):214201. PubMed ID: 36511539 [TBL] [Abstract][Full Text] [Related]
11. Plasmon-Driven Catalysis on Molecules and Nanomaterials. Zhang Z; Zhang C; Zheng H; Xu H Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904 [TBL] [Abstract][Full Text] [Related]
12. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices. Tagliabue G; Jermyn AS; Sundararaman R; Welch AJ; DuChene JS; Pala R; Davoyan AR; Narang P; Atwater HA Nat Commun; 2018 Aug; 9(1):3394. PubMed ID: 30140064 [TBL] [Abstract][Full Text] [Related]
13. Real-Time Simulation of Ultrafast Electronic Dynamics of Nanoscale Systems Involving an Organic Molecule and a Nanoparticle Dimer. Huang X; Liang W J Phys Chem Lett; 2024 Jun; 15(25):6592-6597. PubMed ID: 38885450 [TBL] [Abstract][Full Text] [Related]
14. Instantaneous generation of charge-separated state on TiO₂ surface sensitized with plasmonic nanoparticles. Long R; Prezhdo OV J Am Chem Soc; 2014 Mar; 136(11):4343-54. PubMed ID: 24568726 [TBL] [Abstract][Full Text] [Related]
15. Plasmon-Induced Direct Hot-Carrier Transfer at Metal-Acceptor Interfaces. Kumar PV; Rossi TP; Marti-Dafcik D; Reichmuth D; Kuisma M; Erhart P; Puska MJ; Norris DJ ACS Nano; 2019 Mar; 13(3):3188-3195. PubMed ID: 30768238 [TBL] [Abstract][Full Text] [Related]
16. Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration. Kang PL; Shang C; Liu ZP Acc Chem Res; 2020 Oct; 53(10):2119-2129. PubMed ID: 32940999 [TBL] [Abstract][Full Text] [Related]
17. Plasmon-induced hot carrier distribution in a composite nanosystem: role of the adsorption site. Muhammed MM; Mokkath JH Phys Chem Chem Phys; 2024 Mar; 26(11):9037-9050. PubMed ID: 38440841 [TBL] [Abstract][Full Text] [Related]
18. Hot-Carrier Generation in Plasmonic Nanoparticles: The Importance of Atomic Structure. Rossi TP; Erhart P; Kuisma M ACS Nano; 2020 Aug; 14(8):9963-9971. PubMed ID: 32687311 [TBL] [Abstract][Full Text] [Related]
19. Machine learning dielectric screening for the simulation of excited state properties of molecules and materials. Dong SS; Govoni M; Galli G Chem Sci; 2021 Mar; 12(13):4970-4980. PubMed ID: 34163744 [TBL] [Abstract][Full Text] [Related]