These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37078798)

  • 1. A Bifunctional Liquid Fuel Cell Coupling Power Generation and V
    Sun S; Fang L; Guo H; Sun L; Liu Y; Cheng Y
    Adv Sci (Weinh); 2023 Jun; 10(18):e2207728. PubMed ID: 37078798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capacity Decay Mitigation by Asymmetric Positive/Negative Electrolyte Volumes in Vanadium Redox Flow Batteries.
    Park JH; Park JJ; Park OO; Yang JH
    ChemSusChem; 2016 Nov; 9(22):3181-3187. PubMed ID: 27767257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review.
    Skyllas-Kazacos M; Cao L; Kazacos M; Kausar N; Mousa A
    ChemSusChem; 2016 Jul; 9(13):1521-43. PubMed ID: 27295523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capacity decay and remediation of nafion-based all-vanadium redox flow batteries.
    Luo Q; Li L; Wang W; Nie Z; Wei X; Li B; Chen B; Yang Z; Sprenkle V
    ChemSusChem; 2013 Feb; 6(2):268-74. PubMed ID: 23208862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation in microbial fuel cells.
    Zhang B; Tian C; Liu Y; Hao L; Liu Y; Feng C; Liu Y; Wang Z
    Bioresour Technol; 2015 Mar; 179():91-97. PubMed ID: 25536507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superior Electrocatalytic Activity of a Robust Carbon-Felt Electrode with Oxygen-Rich Phosphate Groups for All-Vanadium Redox Flow Batteries.
    Kim KJ; Lee HS; Kim J; Park MS; Kim JH; Kim YJ; Skyllas-Kazacos M
    ChemSusChem; 2016 Jun; 9(11):1329-38. PubMed ID: 27106165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low-cost average valence detector for mixed electrolytes in vanadium flow batteries.
    Li D; Zhang Y; Li Z; Liu L
    RSC Adv; 2018 Jun; 8(37):20773-20780. PubMed ID: 35542334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flower-like Vanadium Suflide/Reduced Graphene Oxide Composite: An Energy Storage Material for Aluminum-Ion Batteries.
    Zhang X; Wang S; Tu J; Zhang G; Li S; Tian D; Jiao S
    ChemSusChem; 2018 Feb; 11(4):709-715. PubMed ID: 29285890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphoteric Ion-Exchange Membranes with Significantly Improved Vanadium Barrier Properties for All-Vanadium Redox Flow Batteries.
    Nibel O; Rojek T; Schmidt TJ; Gubler L
    ChemSusChem; 2017 Jul; 10(13):2767-2777. PubMed ID: 28544623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme-Inspired Formulation of the Electrolyte for Stable and Efficient Vanadium Redox Flow Batteries at High Temperatures.
    Abbas S; Hwang J; Kim H; Chae SA; Kim JW; Mehboob S; Ahn A; Han OH; Ha HY
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26842-26853. PubMed ID: 31268664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template-free synthesis of hierarchical vanadium-glycolate hollow microspheres and their conversion to V2O5 with improved lithium storage capability.
    Pan A; Zhu T; Wu HB; Lou XW
    Chemistry; 2013 Jan; 19(2):494-500. PubMed ID: 23193070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable Oxygen Functional Groups as Electrocatalysts on Graphite Felt Surfaces for All-Vanadium Flow Batteries.
    Estevez L; Reed D; Nie Z; Schwarz AM; Nandasiri MI; Kizewski JP; Wang W; Thomsen E; Liu J; Zhang JG; Sprenkle V; Li B
    ChemSusChem; 2016 Jun; 9(12):1455-61. PubMed ID: 27184225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Mechanism for the Reduction of Vanadyl Acetylacetonate to Vanadium Acetylacetonate for Room Temperature Flow Batteries.
    Shamie JS; Liu C; Shaw LL; Sprenkle VL
    ChemSusChem; 2017 Feb; 10(3):533-540. PubMed ID: 27863095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic production of impurity-free V
    Heo J; Han JY; Kim S; Yuk S; Choi C; Kim R; Lee JH; Klassen A; Ryi SK; Kim HT
    Nat Commun; 2019 Sep; 10(1):4412. PubMed ID: 31562304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Battery technologies for large-scale stationary energy storage.
    Soloveichik GL
    Annu Rev Chem Biomol Eng; 2011; 2():503-27. PubMed ID: 22432629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards High Performance Chemical Vapour Deposition V
    Vernardou D; Drosos C; Kafizas A; Pemble ME; Koudoumas E
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33256209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The next generation vanadium flow batteries with high power density - a perspective.
    Lu W; Li X; Zhang H
    Phys Chem Chem Phys; 2017 Dec; 20(1):23-35. PubMed ID: 29218355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane development for vanadium redox flow batteries.
    Schwenzer B; Zhang J; Kim S; Li L; Liu J; Yang Z
    ChemSusChem; 2011 Oct; 4(10):1388-406. PubMed ID: 22102992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging Sensor for the Detection of the Flow Battery Via Weak Value Amplification.
    Xu Y; Zhou C; Shi L; Zhang X; Guan T; Guo C; Li Z; Xing X; Ji Y; Liu L; He Y
    Anal Chem; 2021 Sep; 93(38):12914-12920. PubMed ID: 34523343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel energy storage system incorporating electrically rechargeable liquid fuels as the storage medium.
    Jiang H; Wei L; Fan X; Xu J; Shyy W; Zhao T
    Sci Bull (Beijing); 2019 Feb; 64(4):270-280. PubMed ID: 36659717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.