These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37078908)

  • 1. Macromolecular Engineering: From Precise Macromolecular Inks to 3D Printed Microstructures.
    Catt SO; Hackner M; Spatz JP; Blasco E
    Small; 2023 Dec; 19(50):e2300844. PubMed ID: 37078908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing Hierarchically Nano-Ordered Structures.
    Weidinger B; Yang G; von Coelln N; Nirschl H; Wacker I; Tegeder P; Schröder RR; Blasco E
    Adv Sci (Weinh); 2023 Oct; 10(28):e2302756. PubMed ID: 37532671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs.
    Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering.
    Jakus AE; Shah RN
    J Biomed Mater Res A; 2017 Jan; 105(1):274-283. PubMed ID: 26860782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the 3D Printability of Covalently Cross-Linked Polypeptide-Based Hydrogels.
    Giliomee J; du Toit LC; Klumperman B; Choonara YE
    ACS Omega; 2022 Mar; 7(9):7556-7571. PubMed ID: 35284718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in 3D printing properties of natural food gels: Application of innovative food additives.
    Sharma R; Chandra Nath P; Kumar Hazarika T; Ojha A; Kumar Nayak P; Sridhar K
    Food Chem; 2024 Jan; 432():137196. PubMed ID: 37659329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.
    Tran HN; Kim IG; Kim JH; Chung EJ; Noh I
    Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Printing of Robust High-Performance Conducting Polymer Hydrogel-Based Electrical Bioadhesive Interface for Soft Bioelectronics.
    Yu J; Wan R; Tian F; Cao J; Wang W; Liu Q; Yang H; Liu J; Liu X; Lin T; Xu J; Lu B
    Small; 2024 May; 20(19):e2308778. PubMed ID: 38063822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications, fluid mechanics, and colloidal science of carbon-nanotube-based 3D printable inks.
    Zhao B; Sivasankar VS; Subudhi SK; Sinha S; Dasgupta A; Das S
    Nanoscale; 2022 Oct; 14(40):14858-14894. PubMed ID: 36196967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The current state of the art in gellan-based printing inks in tissue engineering.
    Cernencu AI; Ioniță M
    Carbohydr Polym; 2023 Jun; 309():120676. PubMed ID: 36906360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Multi-Photon 3D Laser Printing: Active Materials and Applications.
    Mainik P; Spiegel CA; Blasco E
    Adv Mater; 2024 Mar; 36(11):e2310100. PubMed ID: 37935054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier.
    Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-Photon Laser Microprinting of Highly Ordered Nanoporous Materials Based on Hexagonal Columnar Liquid Crystals.
    Monti J; Concellón A; Dong R; Simmler M; Münchinger A; Huck C; Tegeder P; Nirschl H; Wegener M; Osuji CO; Blasco E
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35849651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymerization Induced Microphase Separation of ABC Triblock Copolymers for 3D Printing Nanostructured Materials.
    Shi X; Yao Y; Zhang J; Corrigan N; Boyer C
    Small; 2024 Sep; 20(39):e2305268. PubMed ID: 37661582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic Effect of Physical and Chemical Cross-Linkers Enhances Shape Fidelity and Mechanical Properties of 3D Printable Low-Modulus Polyesters.
    Ortiz-Ortiz DN; Mokarizadeh AH; Segal M; Dang F; Zafari M; Tsige M; Joy A
    Biomacromolecules; 2023 Nov; 24(11):5091-5104. PubMed ID: 37882707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printing of Self-Assembling Nanofibrous Multidomain Peptide Hydrogels.
    Farsheed AC; Thomas AJ; Pogostin BH; Hartgerink JD
    Adv Mater; 2023 Mar; 35(11):e2210378. PubMed ID: 36604310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in 3D printable conductive hydrogel inks for neural engineering.
    Kim SD; Kim K; Shin M
    Nano Converg; 2023 Sep; 10(1):41. PubMed ID: 37679589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired 3D printable pectin-nanocellulose ink formulations.
    Cernencu AI; Lungu A; Stancu IC; Serafim A; Heggset E; Syverud K; Iovu H
    Carbohydr Polym; 2019 Sep; 220():12-21. PubMed ID: 31196530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired Processing: Complex Coacervates as Versatile Inks for 3D Bioprinting.
    Khoonkari M; Es Sayed J; Oggioni M; Amirsadeghi A; Dijkstra P; Parisi D; Kruyt F; van Rijn P; Włodarczyk-Biegun MK; Kamperman M
    Adv Mater; 2023 Jul; 35(28):e2210769. PubMed ID: 36916861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review on Antibacterial Biomaterials in Biomedical Applications: From Materials Perspective to Bioinks Design.
    Pahlevanzadeh F; Setayeshmehr M; Bakhsheshi-Rad HR; Emadi R; Kharaziha M; Poursamar SA; Ismail AF; Sharif S; Chen X; Berto F
    Polymers (Basel); 2022 May; 14(11):. PubMed ID: 35683916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.