BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 3707891)

  • 21. Effect of gossypol on erythrocyte membrane function: specific inhibition of inorganic anion exchange and interaction with band 3.
    Haspel HC; Corin RE; Sonenberg M
    J Pharmacol Exp Ther; 1985 Sep; 234(3):575-83. PubMed ID: 4032282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reversible and irreversible inhibition, by stilbenedisulphonates, of lactate transport into rat erythrocytes. Identification of some new high-affinity inhibitors.
    Poole RC; Halestrap AP
    Biochem J; 1991 Apr; 275 ( Pt 2)(Pt 2):307-12. PubMed ID: 2025218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three different actions of phenylglyoxal on band 3 protein-mediated anion transport across the red blood cell membrane.
    Gärtner EM; Liebold K; Legrum B; Fasold H; Passow H
    Biochim Biophys Acta; 1997 Jan; 1323(2):208-22. PubMed ID: 9042344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transmembrane helix-helix interactions and accessibility of H2DIDS on labelled band 3, the erythrocyte anion exchange protein.
    Landolt-Marticorena C; Casey JR; Reithmeier RA
    Mol Membr Biol; 1995; 12(2):173-82. PubMed ID: 7795708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport.
    Salhany JM; Sloan RL; Cordes KS
    Biochemistry; 2003 Feb; 42(6):1589-602. PubMed ID: 12578372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catabolism of the anion transport protein in human erythrocytes.
    Morrison M; Grant W; Smith HT; Mueller TJ; Hsu L
    Biochemistry; 1985 Oct; 24(22):6311-5. PubMed ID: 4084522
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Major proteolytic fragments of the murine band 3 protein as obtained after in situ proteolysis.
    Raida M; Wendel J; Kojro E; Fahrenholz F; Fasold H; Legrum B; Passow H
    Biochim Biophys Acta; 1989 Apr; 980(3):291-8. PubMed ID: 2713407
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein structure in relation to anion transport in red cells.
    Rothstein A; Ramjeesingh M; Grinstein S; Knauf PA
    Ann N Y Acad Sci; 1980; 341():433-43. PubMed ID: 6994547
    [No Abstract]   [Full Text] [Related]  

  • 29. Inhibition of anion transport associated with chymotryptic cleavages of red blood cell band 3 protein.
    DuPre AM; Rothstein A
    Biochim Biophys Acta; 1981 Sep; 646(3):471-8. PubMed ID: 7284374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for the development of an intermonomeric asymmetry in the covalent binding of 4,4'-diisothiocyanatostilbene-2,2'-disulfonate to human erythrocyte band 3.
    Salhany JM; Sloan RL; Cordes KA
    Biochemistry; 1991 Apr; 30(16):4097-104. PubMed ID: 2018776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glycine transport by human red blood cells and ghosts: evidence for glycine anion and proton cotransport by band 3.
    King PA; Gunn RB
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C814-21. PubMed ID: 1659210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of inorganic anion transport across the human red blood cell membrane by chloride-dependent association of dipyridamole with a stilbene disulfonate binding site on the band 3 protein.
    Legrum B; Passow H
    Biochim Biophys Acta; 1989 Feb; 979(2):193-207. PubMed ID: 2923878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A kinetic study of the role of band 3 anion transport protein in the transport of salicylic acid and other hydroxybenzoic acids across the human erythrocyte membrane.
    Minami T; Cutler DJ
    J Pharm Sci; 1992 May; 81(5):424-7. PubMed ID: 1403672
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformational change of band 3 protein induced by diethyl pyrocarbonate modification in human erythrocyte ghosts.
    Izuhara K; Okubo K; Hamasaki N
    Biochemistry; 1989 May; 28(11):4725-8. PubMed ID: 2765508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of band III in calcium transport across the human erythrocyte membrane.
    Waisman DM; Smallwood J; Lafreniere D; Rasmussen H
    FEBS Lett; 1982 Aug; 145(2):337-40. PubMed ID: 6215262
    [No Abstract]   [Full Text] [Related]  

  • 36. DIDS-effect on Ser/Thr- and Tyr-phosphorylation of membrane proteins in human erythrocytes.
    Clari G; Bordin L; Moret V
    Biochem Int; 1992 May; 26(6):1065-72. PubMed ID: 1632802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Penetration of erythrocyte membrane by peroxynitrite: participation of the anion exchange protein.
    Soszyński M; Bartosz G
    Biochem Mol Biol Int; 1997 Oct; 43(2):319-25. PubMed ID: 9350339
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ cross-linking of human erythrocyte band 3 by bis(sulfosuccinimidyl)suberate. Evidence for ligand modulation of two alternate quaternary forms: covalent band 3 dimers and noncovalent tetramers formed by the association of two covalent dimers.
    Salhany JM; Sloan RL; Cordes KA
    J Biol Chem; 1990 Oct; 265(29):17688-93. PubMed ID: 2211656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of intracellular pH on high pressure-induced hemolysis of anion transport inhibitor-treated erythrocytes.
    Matsumoto M; Yamaguchi T; Terada S; Kimoto E
    Biochim Biophys Acta; 1996 Apr; 1280(2):243-50. PubMed ID: 8639700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transport and interactions of anions and protons in the red blood cell membrane.
    Wieth JO; Brahm J; Funder J
    Ann N Y Acad Sci; 1980; 341():394-418. PubMed ID: 6249153
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.