These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 37079099)
21. Assessing the utility of remote sensing data to accurately estimate changes in groundwater storage. Ahamed A; Knight R; Alam S; Pauloo R; Melton F Sci Total Environ; 2022 Feb; 807(Pt 1):150635. PubMed ID: 34606871 [TBL] [Abstract][Full Text] [Related]
22. Groundwater mounding: A diagnostic feature for mapping aquifer connectivity in hyper-arid deserts. Abotalib AZ; Heggy E; El Bastawesy M; Ismail E; Gad A; Attwa M Sci Total Environ; 2021 Dec; 801():149760. PubMed ID: 34467900 [TBL] [Abstract][Full Text] [Related]
23. Machine learning based downscaling of GRACE-estimated groundwater in Central Valley, California. Agarwal V; Akyilmaz O; Shum CK; Feng W; Yang TY; Forootan E; Syed TH; Haritashya UK; Uz M Sci Total Environ; 2023 Mar; 865():161138. PubMed ID: 36586696 [TBL] [Abstract][Full Text] [Related]
24. Benefits and Pitfalls of GRACE Data Assimilation: a Case Study of Terrestrial Water Storage Depletion in India. Girotto M; De Lannoy GJM; Reichle RH; Rodell M; Draper C; Bhanja SN; Mukherjee A Geophys Res Lett; 2017 May; 44(9):4107-4115. PubMed ID: 29643570 [TBL] [Abstract][Full Text] [Related]
25. Visual MODFLOW, solute transport modeling, and remote sensing techniques for adapting aquifer potentiality under reclamation and climate change impacts in coastal aquifer. Abd El Ghany MM; El-Hadidy SM; Sakr SA; Korany EA; Morsy SM Sci Rep; 2024 Oct; 14(1):22827. PubMed ID: 39353968 [TBL] [Abstract][Full Text] [Related]
26. GRACE-derived groundwater changes over Greater Horn of Africa: Temporal variability and the potential for irrigated agriculture. Agutu NO; Awange JL; Ndehedehe C; Kirimi F; Kuhn M Sci Total Environ; 2019 Nov; 693():133467. PubMed ID: 31634997 [TBL] [Abstract][Full Text] [Related]
27. Groundwater recharge estimation using in-situ and GRACE observations in the eastern region of the United Arab Emirates. Alghafli K; Shi X; Sloan W; Shamsudduha M; Tang Q; Sefelnasr A; Ebraheem AA Sci Total Environ; 2023 Apr; 867():161489. PubMed ID: 36634784 [TBL] [Abstract][Full Text] [Related]
28. Hydrogeological characterisation of groundwater over Brazil using remotely sensed and model products. Hu K; Awange JL; Khandu ; Forootan E; Goncalves RM; Fleming K Sci Total Environ; 2017 Dec; 599-600():372-386. PubMed ID: 28482297 [TBL] [Abstract][Full Text] [Related]
30. Reconstruction of GRACE terrestrial water storage anomalies using Multi-Layer Perceptrons for South Indian River basins. Satish Kumar K; AnandRaj P; Sreelatha K; Sridhar V Sci Total Environ; 2023 Jan; 857(Pt 2):159289. PubMed ID: 36209880 [TBL] [Abstract][Full Text] [Related]
31. Impacts of Human Activities and Climate Change on Water Storage Changes in Shandong Province, China. Deng L; Han Z; Pu W; Bao R; Wang Z; Wu Q; Qiao J Environ Sci Pollut Res Int; 2022 May; 29(23):35365-35381. PubMed ID: 35060057 [TBL] [Abstract][Full Text] [Related]
32. Global groundwater droughts are more severe than they appear in hydrological models: An investigation through a Bayesian merging of GRACE and GRACE-FO data with a water balance model. Forootan E; Mehrnegar N; Schumacher M; Schiettekatte LAR; Jagdhuber T; Farzaneh S; van Dijk AIJM; Shamsudduha M; Shum CK Sci Total Environ; 2024 Feb; 912():169476. PubMed ID: 38145671 [TBL] [Abstract][Full Text] [Related]
33. Understanding the association between climate variability and the Nile's water level fluctuations and water storage changes during 1992-2016. Khaki M; Awange J; Forootan E; Kuhn M Sci Total Environ; 2018 Dec; 645():1509-1521. PubMed ID: 30248872 [TBL] [Abstract][Full Text] [Related]
34. Assessment of groundwater aquifer using geophysical and remote sensing data on the area of Central Sinai, Egypt. Araffa SAS; Hamed HG; Nayef A; Sabet HS; AbuBakr MM; Mebed ME Sci Rep; 2023 Oct; 13(1):18245. PubMed ID: 37880255 [TBL] [Abstract][Full Text] [Related]
35. The analysis on groundwater storage variations from GRACE/GRACE-FO in recent 20 years driven by influencing factors and prediction in Shandong Province, China. Li W; Bao L; Yao G; Wang F; Guo Q; Zhu J; Zhu J; Wang Z; Bi J; Zhu C; Zhong Y; Lu S Sci Rep; 2024 Mar; 14(1):5819. PubMed ID: 38461310 [TBL] [Abstract][Full Text] [Related]
36. Using GRACE to quantify the depletion of terrestrial water storage in Northeastern Brazil: The Urucuia Aquifer System. Gonçalves RD; Stollberg R; Weiss H; Chang HK Sci Total Environ; 2020 Feb; 705():135845. PubMed ID: 31972920 [TBL] [Abstract][Full Text] [Related]
37. Monitoring groundwater storage in a fractured volcanic aquifer system. Melati MD; Athayde GB; Fan FM; Garcia LH; de Vasconcelos Muller Athayde C Environ Monit Assess; 2023 Feb; 195(3):385. PubMed ID: 36763308 [TBL] [Abstract][Full Text] [Related]
38. Spatio-temporal dynamics of groundwater storage changes in the Yellow River Basin. Lin M; Biswas A; Bennett EM J Environ Manage; 2019 Apr; 235():84-95. PubMed ID: 30677659 [TBL] [Abstract][Full Text] [Related]
39. Exploring groundwater and soil water storage changes across the CONUS at 12.5 km resolution by a Bayesian integration of GRACE data into W3RA. Mehrnegar N; Jones O; Singer MB; Schumacher M; Jagdhuber T; Scanlon BR; Rateb A; Forootan E Sci Total Environ; 2021 Mar; 758():143579. PubMed ID: 33257057 [TBL] [Abstract][Full Text] [Related]
40. A socio-ecological investigation of options to manage groundwater degradation in the Western Desert, Egypt. King C; Salem B Ambio; 2012 Jul; 41(5):490-503. PubMed ID: 22569842 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]