BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 3707912)

  • 1. 1H NMR spectroscopic studies of calcium-binding proteins. 1. Stepwise proteolysis of the C-terminal alpha-helix of a helix-loop-helix metal-binding domain.
    Corson DC; Williams TC; Kay LE; Sykes BD
    Biochemistry; 1986 Apr; 25(7):1817-26. PubMed ID: 3707912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1H NMR spectroscopic studies of calcium-binding proteins. 3. Solution conformations of rat apo-alpha-parvalbumin and metal-bound rat alpha-parvalbumin.
    Williams TC; Corson DC; Oikawa K; McCubbin WD; Kay CM; Sykes BD
    Biochemistry; 1986 Apr; 25(7):1835-46. PubMed ID: 3707914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oncomodulin. 1H NMR and optical stopped-flow spectroscopic studies of its solution conformation and metal-binding properties.
    Williams TC; Corson DC; Sykes BD; MacManus JP
    J Biol Chem; 1987 May; 262(13):6248-56. PubMed ID: 3571255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1H NMR spectroscopic studies of calcium-binding proteins. 2. Histidine microenvironments in alpha- and beta-parvalbumins as determined by protonation and laser photochemically induced dynamic nuclear polarization effects.
    Williams TC; Corson DC; McCubbin WD; Oikawa K; Kay CM; Sykes BD
    Biochemistry; 1986 Apr; 25(7):1826-34. PubMed ID: 3707913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for the uses of lanthanide NMR shift probes in the determination of protein structure in solutio. Application to the EF calcium binding site of carp parvalbumin.
    Lee L; Sykes BD
    Biophys J; 1980 Oct; 32(1):193-210. PubMed ID: 7248448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of lanthanide-induced nuclear magnetic resonance shifts for determination of protein structure in solution: EF calcium binding site of carp parvalbumin.
    Lee L; Sykes BD
    Biochemistry; 1983 Sep; 22(19):4366-73. PubMed ID: 6626506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the unique parvalbumin component from muscle of the leopard shark (Triakis semifasciata). The first X-ray study of an alpha-parvalbumin.
    Roquet F; Declercq JP; Tinant B; Rambaud J; Parello J
    J Mol Biol; 1992 Feb; 223(3):705-20. PubMed ID: 1542115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 13C and 113Cd NMR studies of the chelation of metal ions by the calcium binding protein parvalbumin.
    Bjornson ME; Corson DC; Sykes BD
    J Inorg Biochem; 1985 Oct; 25(2):141-9. PubMed ID: 3932596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stopped-flow kinetic studies of metal ion dissociation or exchange in a tryptophan-containing parvalbumin.
    Breen PJ; Johnson KA; Horrocks WD
    Biochemistry; 1985 Sep; 24(19):4997-5004. PubMed ID: 4074672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium binding proteins: optical stopped-flow and proton nuclear magnetic resonance studies of the binding of the lanthanide series of metal ions to parvalbumin.
    Corson DC; Williams TC; Sykes BD
    Biochemistry; 1983 Dec; 22(25):5882-9. PubMed ID: 6661415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal ion binding to parvalbumin. A proton NMR study.
    Ragg E; Cavé A; Drakenberg T
    Acta Chem Scand B; 1986; 40(1):6-14. PubMed ID: 3962552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton nuclear magnetic resonance determination of the sequential ytterbium replacement of calcium in carp parvalbumin.
    Lee L; Sykes BD
    Biochemistry; 1981 Mar; 20(5):1156-62. PubMed ID: 7225322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An optical stopped-flow and 1H and 113Cd nuclear magnetic resonance study of the kinetics and stoichiometry of the interaction of the lanthanide Yb3+ with carp parvalbumin.
    Corson DC; Lee L; McQuaid GA; Sykes BD
    Can J Biochem Cell Biol; 1983 Aug; 61(8):860-7. PubMed ID: 6627097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restrained least squares refinement of native (calcium) and cadmium-substituted carp parvalbumin using X-ray crystallographic data at 1.6-A resolution.
    Swain AL; Kretsinger RH; Amma EL
    J Biol Chem; 1989 Oct; 264(28):16620-8. PubMed ID: 2777802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional 1H nuclear magnetic resonance study of pike pI 5.0 parvalbumin (Esox lucius). Sequential resonance assignments and folding of the polypeptide chain.
    Padilla A; Cavé A; Parello J
    J Mol Biol; 1988 Dec; 204(4):995-1017. PubMed ID: 3221403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cation binding to parvalbumin studied by 113Cd and 23Na NMR. Peak assignment of rabbit (pI 5.5) parvalbumin.
    Svärd M; Drakenberg T
    Acta Chem Scand B; 1986 Sep; 40(8):689-93. PubMed ID: 3825402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural studies of calcium-binding proteins using nuclear magnetic resonance.
    Lee L; Corson DC; Sykes BD
    Biophys J; 1985 Feb; 47(2 Pt 1):139-42. PubMed ID: 3978195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lanthanide ion luminescence probes. Characterization of metal ion binding sites and intermetal energy transfer distance measurements in calcium-binding proteins. 1. Parvalbumin.
    Rhee MJ; Sudnick DR; Arkle VK; Horrocks WD
    Biochemistry; 1981 Jun; 20(12):3328-34. PubMed ID: 7260035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of parvalbumin of pike II with calcium and terbium ions.
    Eberspach I; Strassburger W; Glatter U; Gerday C; Wollmer A
    Biochim Biophys Acta; 1988 Jan; 952(1):67-76. PubMed ID: 3334854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear magnetic resonance determination of metal-protn distances in the EF site of carp parvalbumin using the susceptibility contribution to the line broadening of lanthanide-shifted resonances.
    Lee L; Sykes BD
    Biochemistry; 1980 Jul; 19(14):3208-14. PubMed ID: 7407042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.