These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 3707918)
1. Chromophoric cinnamic acid substrates as resonance Raman probes of the active site environment in native and unfolded alpha-chymotrypsin. Weber JA; Turpin P; Bernhard SA; Peticolas WL Biochemistry; 1986 Apr; 25(8):1912-7. PubMed ID: 3707918 [TBL] [Abstract][Full Text] [Related]
2. Resonance Raman carbonyl frequencies and ultraviolet absorption maxima as indicators of the active site environment in native and unfolded chromophoric acyl-alpha-chymotrypsin. Argade PV; Gerke GK; Weber JP; Peticolas WL Biochemistry; 1984 Jan; 23(2):299-304. PubMed ID: 6607745 [TBL] [Abstract][Full Text] [Related]
3. Resonance Raman evidence for substrate reorginization in the active site of papain. Carey PR; Carriere RG; Lynn KR; Schneider H Biochemistry; 1976 Jun; 15(11):2387-93. PubMed ID: 1276146 [TBL] [Abstract][Full Text] [Related]
4. Details of the acyl-enzyme intermediate and the oxyanion hole in serine protease catalysis. Whiting AK; Peticolas WL Biochemistry; 1994 Jan; 33(2):552-61. PubMed ID: 8286385 [TBL] [Abstract][Full Text] [Related]
5. Direct observation of the titration of substrate carbonyl groups in the active site of alpha-chymotrypsin by resonance Raman spectroscopy. Tonge PJ; Carey PR Biochemistry; 1989 Aug; 28(16):6701-9. PubMed ID: 2790025 [TBL] [Abstract][Full Text] [Related]
6. Evidence for two acyl group conformations in some furylacryloyl- and thienylacryloylchymotrypsins: resonance Raman studies of enzyme--substrate intermediates at pH 3.0. MacClement BA; Carriere RG; Phelps DJ; Carey PR Biochemistry; 1981 Jun; 20(12):3438-47. PubMed ID: 7260048 [TBL] [Abstract][Full Text] [Related]
7. Resonance Raman and Fourier transform infrared spectroscopic studies of the acyl carbonyl group in [3-(5-methyl-2-thienyl)acryloyl]chymotrypsin: evidence for artifacts in the spectra obtained by both techniques. Tonge PJ; Pusztai M; White AJ; Wharton CW; Carey PR Biochemistry; 1991 May; 30(19):4790-5. PubMed ID: 2029519 [TBL] [Abstract][Full Text] [Related]
8. Length of the acyl carbonyl bond in acyl-serine proteases correlates with reactivity. Tonge PJ; Carey PR Biochemistry; 1990 Dec; 29(48):10723-7. PubMed ID: 2271679 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen-bonding in enzyme catalysis. Fourier-transform infrared detection of ground-state electronic strain in acyl-chymotrypsins and analysis of the kinetic consequences. White AJ; Wharton CW Biochem J; 1990 Sep; 270(3):627-37. PubMed ID: 2241898 [TBL] [Abstract][Full Text] [Related]
10. Alpha-helix dipoles and catalysis: absorption and Raman spectroscopic studies of acyl cysteine proteases. Doran JD; Carey PR Biochemistry; 1996 Sep; 35(38):12495-502. PubMed ID: 8823185 [TBL] [Abstract][Full Text] [Related]
11. Active site properties of the 3C proteinase from hepatitis A virus (a hybrid cysteine/serine protease) probed by Raman spectroscopy. Dinakarpandian D; Shenoy B; Pusztai-Carey M; Malcolm BA; Carey PR Biochemistry; 1997 Apr; 36(16):4943-8. PubMed ID: 9125516 [TBL] [Abstract][Full Text] [Related]
12. Effect of specificity on ligand conformation in acyl-chymotrypsins. Johal SS; White AJ; Wharton CW Biochem J; 1994 Jan; 297 ( Pt 2)(Pt 2):281-7. PubMed ID: 8297332 [TBL] [Abstract][Full Text] [Related]
13. Electric fields in active sites: substrate switching from null to strong fields in thiol- and selenol-subtilisins. Dinakarpandian D; Shenoy BC; Hilvert D; McRee DE; McTigue M; Carey PR Biochemistry; 1999 May; 38(20):6659-67. PubMed ID: 10350485 [TBL] [Abstract][Full Text] [Related]
14. Analysis and elimination of protein perturbation in infrared difference spectra of acyl-chymotrypsin ester carbonyl groups by using 13C isotopic substitution. White AJ; Drabble K; Ward S; Wharton CW Biochem J; 1992 Oct; 287 ( Pt 1)(Pt 1):317-23. PubMed ID: 1417785 [TBL] [Abstract][Full Text] [Related]
15. Attenuated total reflectance Fourier transform infrared analysis of an acyl-enzyme intermediate of alpha-chymotrypsin. Swedberg SA; Pesek JJ; Fink AL Anal Biochem; 1990 Apr; 186(1):153-8. PubMed ID: 2356965 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and characterization of a selenium-containing substrate of alpha-chymotrypsin. Selenium-77 nuclear magnetic resonance observation of an acyl-alpha-chymotrypsin intermediate. Mullen GP; Dunlap RB; Odom JD Biochemistry; 1986 Sep; 25(19):5625-32. PubMed ID: 3778877 [TBL] [Abstract][Full Text] [Related]
17. Forces, bond lengths, and reactivity: fundamental insight into the mechanism of enzyme catalysis. Tonge PJ; Carey PR Biochemistry; 1992 Sep; 31(38):9122-5. PubMed ID: 1390699 [TBL] [Abstract][Full Text] [Related]
18. Hydrogen-bonding in 2-aminobenzoyl-alpha-chymotrypsin formed by acylation of the enzyme with isatoic anhydride: IR and mass spectroscopic studies. Goodall JJ; Booth VK; Ashcroft AE; Wharton CW Chembiochem; 2002 Jan; 3(1):68-75. PubMed ID: 17590956 [TBL] [Abstract][Full Text] [Related]
19. Catalysis by serine proteases and their zymogens. A study of acyl intermediates by circular dichroism. Kerr MA; Walsh KA; Neurath H Biochemistry; 1975 Nov; 14(23):5088-94. PubMed ID: 1238107 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of gamma-chymotrypsin in complex with 7-hydroxycoumarin. Ghani U; Ng KK; Atta-ur-Rahman ; Choudhary MI; Ullah N; James MN J Mol Biol; 2001 Nov; 314(3):519-25. PubMed ID: 11846564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]