BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37079187)

  • 1. Targeting human mitochondrial NAD(P)
    Chen KC; Hsiao IH; Huang YN; Chou YT; Lin YC; Hsieh JY; Chang YL; Wu KH; Liu GY; Hung HC
    Cell Oncol (Dordr); 2023 Oct; 46(5):1301-1316. PubMed ID: 37079187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of the human malic enzyme 2 modifies energy metabolism and inhibits cellular respiration.
    Hsieh JY; Chen KC; Wang CH; Liu GY; Ye JA; Chou YT; Lin YC; Lyu CJ; Chang RY; Liu YL; Li YH; Lee MR; Ho MC; Hung HC
    Commun Biol; 2023 May; 6(1):548. PubMed ID: 37217557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of erythroid differentiation in human erythroleukemia cells by depletion of malic enzyme 2.
    Ren JG; Seth P; Everett P; Clish CB; Sukhatme VP
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20824065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting Myeloperoxidase Disrupts Mitochondrial Redox Balance and Overcomes Cytarabine Resistance in Human Acute Myeloid Leukemia.
    Hosseini M; Rezvani HR; Aroua N; Bosc C; Farge T; Saland E; Guyonnet-Dupérat V; Zaghdoudi S; Jarrou L; Larrue C; Sabatier M; Mouchel PL; Gotanègre M; Piechaczyk M; Bossis G; Récher C; Sarry JE
    Cancer Res; 2019 Oct; 79(20):5191-5203. PubMed ID: 31358527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Kinase C Epsilon Is a Key Regulator of Mitochondrial Redox Homeostasis in Acute Myeloid Leukemia.
    Di Marcantonio D; Martinez E; Sidoli S; Vadaketh J; Nieborowska-Skorska M; Gupta A; Meadows JM; Ferraro F; Masselli E; Challen GA; Milsom MD; Scholl C; Fröhling S; Balachandran S; Skorski T; Garcia BA; Mirandola P; Gobbi G; Garzon R; Vitale M; Sykes SM
    Clin Cancer Res; 2018 Feb; 24(3):608-618. PubMed ID: 29127121
    [No Abstract]   [Full Text] [Related]  

  • 6. Targeting Glutamine Metabolism and Redox State for Leukemia Therapy.
    Gregory MA; Nemkov T; Park HJ; Zaberezhnyy V; Gehrke S; Adane B; Jordan CT; Hansen KC; D'Alessandro A; DeGregori J
    Clin Cancer Res; 2019 Jul; 25(13):4079-4090. PubMed ID: 30940653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SLC25A51 decouples the mitochondrial NAD
    Lu MJ; Busquets J; Impedovo V; Wilson CN; Chan HR; Chang YT; Matsui W; Tiziani S; Cambronne XA
    Cell Metab; 2024 Apr; 36(4):808-821.e6. PubMed ID: 38354740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gallic acid targets acute myeloid leukemia via Akt/mTOR-dependent mitochondrial respiration inhibition.
    Gu R; Zhang M; Meng H; Xu D; Xie Y
    Biomed Pharmacother; 2018 Sep; 105():491-497. PubMed ID: 29883944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knockdown of malic enzyme 2 suppresses lung tumor growth, induces differentiation and impacts PI3K/AKT signaling.
    Ren JG; Seth P; Clish CB; Lorkiewicz PK; Higashi RM; Lane AN; Fan TW; Sukhatme VP
    Sci Rep; 2014 Jun; 4():5414. PubMed ID: 24957098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism.
    Farge T; Saland E; de Toni F; Aroua N; Hosseini M; Perry R; Bosc C; Sugita M; Stuani L; Fraisse M; Scotland S; Larrue C; Boutzen H; Féliu V; Nicolau-Travers ML; Cassant-Sourdy S; Broin N; David M; Serhan N; Sarry A; Tavitian S; Kaoma T; Vallar L; Iacovoni J; Linares LK; Montersino C; Castellano R; Griessinger E; Collette Y; Duchamp O; Barreira Y; Hirsch P; Palama T; Gales L; Delhommeau F; Garmy-Susini BH; Portais JC; Vergez F; Selak M; Danet-Desnoyers G; Carroll M; Récher C; Sarry JE
    Cancer Discov; 2017 Jul; 7(7):716-735. PubMed ID: 28416471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soluble adenylyl cyclase regulates the cytosolic NADH/NAD
    Chang JC; Go S; Gilglioni EH; Duijst S; Panneman DM; Rodenburg RJ; Li HL; Huang HL; Levin LR; Buck J; Verhoeven AJ; Oude Elferink RPJ
    Biochim Biophys Acta Bioenerg; 2021 Apr; 1862(4):148367. PubMed ID: 33412125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of a novel inhibitor of NAD(P)(+)-dependent malic enzyme (ME2) by high-throughput screening.
    Wen Y; Xu L; Chen FL; Gao J; Li JY; Hu LH; Li J
    Acta Pharmacol Sin; 2014 May; 35(5):674-84. PubMed ID: 24681895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SYK inhibition targets acute myeloid leukemia stem cells by blocking their oxidative metabolism.
    Polak A; Bialopiotrowicz E; Krzymieniewska B; Wozniak J; Stojak M; Cybulska M; Kaniuga E; Mikula M; Jablonska E; Gorniak P; Noyszewska-Kania M; Szydlowski M; Piechna K; Piwocka K; Bugajski L; Lech-Maranda E; Barankiewicz J; Kolkowska-Lesniak A; Patkowska E; Glodkowska-Mrowka E; Baran N; Juszczynski P
    Cell Death Dis; 2020 Nov; 11(11):956. PubMed ID: 33159047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human mitochondrial NAD(P)(+)-dependent malic enzyme participates in cutaneous melanoma progression and invasion.
    Chang YL; Gao HW; Chiang CP; Wang WM; Huang SM; Ku CF; Liu GY; Hung HC
    J Invest Dermatol; 2015 Mar; 135(3):807-815. PubMed ID: 25202825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition.
    Jacque N; Ronchetti AM; Larrue C; Meunier G; Birsen R; Willems L; Saland E; Decroocq J; Maciel TT; Lambert M; Poulain L; Hospital MA; Sujobert P; Joseph L; Chapuis N; Lacombe C; Moura IC; Demo S; Sarry JE; Recher C; Mayeux P; Tamburini J; Bouscary D
    Blood; 2015 Sep; 126(11):1346-56. PubMed ID: 26186940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EIF4A inhibition targets bioenergetic homeostasis in AML MOLM-14 cells in vitro and in vivo and synergizes with cytarabine and venetoclax.
    Fooks K; Galicia-Vazquez G; Gife V; Schcolnik-Cabrera A; Nouhi Z; Poon WWL; Luo V; Rys RN; Aloyz R; Orthwein A; Johnson NA; Hulea L; Mercier FE
    J Exp Clin Cancer Res; 2022 Dec; 41(1):340. PubMed ID: 36482393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanisms of malic enzyme 2 in the tumorigenesis of human gliomas.
    Cheng CP; Huang LC; Chang YL; Hsieh CH; Huang SM; Hueng DY
    Oncotarget; 2016 Jul; 7(27):41460-41472. PubMed ID: 27166188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting the metabolic vulnerability of acute myeloid leukemia blasts with a combination of venetoclax and 8-chloro-adenosine.
    Buettner R; Nguyen LXT; Morales C; Chen MH; Wu X; Chen LS; Hoang DH; Hernandez Vargas S; Pullarkat V; Gandhi V; Marcucci G; Rosen ST
    J Hematol Oncol; 2021 Apr; 14(1):70. PubMed ID: 33902674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. c-Myc plays a critical role in the antileukemic activity of the Mcl-1-selective inhibitor AZD5991 in acute myeloid leukemia.
    Liu S; Qiao X; Wu S; Gai Y; Su Y; Edwards H; Wang Y; Lin H; Taub JW; Wang G; Ge Y
    Apoptosis; 2022 Dec; 27(11-12):913-928. PubMed ID: 35943677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycolytic pathway, redox state of NAD(P)-couples and energy metabolism in lens in galactose-fed rats: effect of an aldose reductase inhibitor.
    Obrosova I; Faller A; Burgan J; Ostrow E; Williamson JR
    Curr Eye Res; 1997 Jan; 16(1):34-43. PubMed ID: 9043821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.