BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 3707924)

  • 61. Comparison of the structures of the metal-thiolate binding site in Zn(II)-, Cd(II)-, and Hg(II)-metallothioneins using molecular modeling techniques.
    Fowle DA; Stillman MJ
    J Biomol Struct Dyn; 1997 Feb; 14(4):393-406. PubMed ID: 9172640
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Domain-specificity of Cd2+ and Zn2+ binding to rabbit liver metallothionein 2. Metal ion mobility in the formation of Cd4-metallothionein alpha-fragment.
    Stillman MJ; Zelazowski AJ
    Biochem J; 1989 Aug; 262(1):181-8. PubMed ID: 2510714
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Significance of alpha-fragment of metallothionein in cadmium binding.
    Kurasaki M; Yamaguchi R; Linde Arias AR; Okabe M; Kojima Y
    Protein Eng; 1997 Apr; 10(4):413-6. PubMed ID: 9194166
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Biphasic kinetics of Zn2+ removal from Zn metallothionein by nitrilotriacetate are associated with differential reactivity of the two metal clusters.
    Li H; Otvos JD
    J Inorg Biochem; 1998 Jul; 70(3-4):187-94. PubMed ID: 9720304
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ag
    Dong S; Shirzadeh M; Fan L; Laganowsky A; Russell DH
    Anal Chem; 2020 Jul; 92(13):8923-8932. PubMed ID: 32515580
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mechanism of cadmium ion substitution in mammalian zinc metallothionein and metallothionein alpha domain: kinetic and structural studies.
    Ejnik J; Shaw CF; Petering DH
    Inorg Chem; 2010 Jul; 49(14):6525-34. PubMed ID: 20560649
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Structural study of the zinc and cadmium complexes of a type 2 plant (Quercus suber) metallothionein: insights by vibrational spectroscopy.
    Domènech J; Tinti A; Capdevila M; Atrian S; Torreggiani A
    Biopolymers; 2007 Jun; 86(3):240-8. PubMed ID: 17377964
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sequential proton resonance assignments and metal cluster topology of lobster metallothionein-1.
    Zhu Z; DeRose EF; Mullen GP; Petering DH; Shaw CF
    Biochemistry; 1994 Aug; 33(30):8858-65. PubMed ID: 8043573
    [TBL] [Abstract][Full Text] [Related]  

  • 69. 113Cd nmr study of the metal cluster structure of human liver metallothionein.
    Boulanger Y; Armitage IM
    J Inorg Biochem; 1982 Oct; 17(2):147-53. PubMed ID: 7175523
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Variation of metal and metallothionein concentrations in a natural population of Ruditapes decussatus.
    Bebianno MJ; Serafim MA
    Arch Environ Contam Toxicol; 2003 Jan; 44(1):53-66. PubMed ID: 12434219
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Spectroscopic properties of the cobalt(II)-substituted alpha-fragment of rabbit liver metallothionein.
    Good M; Vasák M
    Biochemistry; 1986 Jun; 25(11):3328-34. PubMed ID: 3524678
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Metal binding of metallothionein-3 versus metallothionein-2: lower affinity and higher plasticity.
    Palumaa P; Tammiste I; Kruusel K; Kangur L; Jörnvall H; Sillard R
    Biochim Biophys Acta; 2005 Mar; 1747(2):205-11. PubMed ID: 15698955
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Probing the reactivity of the zinc and cadmium ions bound to rabbit liver metallothioneins with EDTA.
    Nicholson JK; Sadler PJ; Vasák M
    Experientia Suppl; 1987; 52():191-201. PubMed ID: 2959505
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Functional comparison of metallothioneins MTT1 and MTT2 from Tetrahymena thermophila.
    Wang Q; Xu J; Chai B; Liang A; Wang W
    Arch Biochem Biophys; 2011 May; 509(2):170-6. PubMed ID: 21352798
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structure of mammalian metallothionein.
    Kägi JH; Vasák M; Lerch K; Gilg DE; Hunziker P; Bernhard WR; Good M
    Environ Health Perspect; 1984 Mar; 54():93-103. PubMed ID: 6329671
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Evidence for a dynamic structure of human neuronal growth inhibitory factor and for major rearrangements of its metal-thiolate clusters.
    Faller P; Hasler DW; Zerbe O; Klauser S; Winge DR; Vasák M
    Biochemistry; 1999 Aug; 38(31):10158-67. PubMed ID: 10433724
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Domain Selection in Metallothionein 1A: Affinity-Controlled Mechanisms of Zinc Binding and Cadmium Exchange.
    Pinter TB; Irvine GW; Stillman MJ
    Biochemistry; 2015 Aug; 54(32):5006-16. PubMed ID: 26167879
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cadmium in metallothioneins.
    Freisinger E; Vašák M
    Met Ions Life Sci; 2013; 11():339-71. PubMed ID: 23430778
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Primary structure and tissue-specific expression of blue crab (Callinectes sapidus) metallothionein isoforms.
    Brouwer M; Enghild J; Hoexum-Brouwer T; Thogersen I; Truncali A
    Biochem J; 1995 Oct; 311 ( Pt 2)(Pt 2):617-22. PubMed ID: 7487904
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Kinetics of Zinc and Cadmium Exchanges between Metallothionein and Carbonic Anhydrase.
    Pinter TB; Stillman MJ
    Biochemistry; 2015 Oct; 54(40):6284-93. PubMed ID: 26401817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.