These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 3707955)
1. Fluorescence studies of the interaction of trichorzianine A IIIc with model membranes. Le Doan T; el Hajji M; Rebuffat S; Rajesvari MR; Bodo B Biochim Biophys Acta; 1986 Jun; 858(1):1-5. PubMed ID: 3707955 [TBL] [Abstract][Full Text] [Related]
2. Interaction of trichorzianines A and B with model membranes and with the amoeba Dictyostelium. el Hajji M; Rebuffat S; Le Doan T; Klein G; Satre M; Bodo B Biochim Biophys Acta; 1989 Jan; 978(1):97-104. PubMed ID: 2914134 [TBL] [Abstract][Full Text] [Related]
3. Isolation and sequence determination of trichorzianines A antifungal peptides from Trichoderma harzianum. el Hajji M; Rebuffat S; Lecommandeur D; Bodo B Int J Pept Protein Res; 1987 Feb; 29(2):207-15. PubMed ID: 3570662 [TBL] [Abstract][Full Text] [Related]
4. Interaction of the polyene antibiotic etruscomycin with large unilamellar lipid vesicles: binding and proton permeability inducement. Capuozzo E; Bolard J Biochim Biophys Acta; 1985 Oct; 820(1):63-73. PubMed ID: 2996598 [TBL] [Abstract][Full Text] [Related]
5. Isolation, sequence, and conformation of seven trichorzianines B from Trichoderma harzianum. Rebuffat S; el Hajji M; Hennig P; Davoust D; Bodo B Int J Pept Protein Res; 1989 Sep; 34(3):200-10. PubMed ID: 2599757 [TBL] [Abstract][Full Text] [Related]
6. Profiling of trichorzianines in culture samples of Trichoderma atroviride by liquid chromatography/tandem mass spectrometry. Stoppacher N; Reithner B; Omann M; Zeilinger S; Krska R; Schuhmacher R Rapid Commun Mass Spectrom; 2007; 21(24):3963-70. PubMed ID: 18008385 [TBL] [Abstract][Full Text] [Related]
8. Tricholongins BI and BII, 19-residue peptaibols from Trichoderma longibrachiatum. Solution structure from two-dimensional NMR spectroscopy. Rebuffat S; Prigent Y; Auvin-Guette C; Bodo B Eur J Biochem; 1991 Nov; 201(3):661-74. PubMed ID: 1935961 [TBL] [Abstract][Full Text] [Related]
9. Comparison of steady-state fluorescence polarization and urea permeability of phosphatidylcholine and phosphatidylsulfocholine liposomes as a function of sterol structure. Pugh EL; Bittman R; Fugler L; Kates M Chem Phys Lipids; 1989 Apr; 50(1):43-50. PubMed ID: 2758524 [TBL] [Abstract][Full Text] [Related]
10. Differences in the interaction of the polyene antibiotic amphotericin B with cholesterol- or ergosterol-containing phospholipid vesicles. A circular dichroism and permeability study. Vertut-Croquin A; Bolard J; Chabbert M; Gary-Bobo C Biochemistry; 1983 Jun; 22(12):2939-44. PubMed ID: 6871175 [TBL] [Abstract][Full Text] [Related]
12. Susceptibilities of phospholipid vesicles containing different sterols to amphotericin B-loaded lysophosphatidylcholine micelles. Onda M; Inoue Y; Kawabata M; Mita T J Biochem; 2003 Jul; 134(1):121-8. PubMed ID: 12944378 [TBL] [Abstract][Full Text] [Related]
13. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related]
14. The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I. Massey JB; Pownall HJ Biochemistry; 2005 Aug; 44(30):10423-33. PubMed ID: 16042420 [TBL] [Abstract][Full Text] [Related]
15. Characterization of permeability and morphological perturbations induced by nisin on phosphatidylcholine membranes. El Jastimi R; Edwards K; Lafleur M Biophys J; 1999 Aug; 77(2):842-52. PubMed ID: 10423430 [TBL] [Abstract][Full Text] [Related]
16. Relationship between sterol/steroid structure and participation in ordered lipid domains (lipid rafts): implications for lipid raft structure and function. Wang J; Megha ; London E Biochemistry; 2004 Feb; 43(4):1010-8. PubMed ID: 14744146 [TBL] [Abstract][Full Text] [Related]
17. Influence of cholesterol and ergosterol on membrane dynamics: a fluorescence approach. Arora A; Raghuraman H; Chattopadhyay A Biochem Biophys Res Commun; 2004 Jun; 318(4):920-6. PubMed ID: 15147960 [TBL] [Abstract][Full Text] [Related]
18. Elasticity and phase behavior of DPPC membrane modulated by cholesterol, ergosterol, and ethanol. Tierney KJ; Block DE; Longo ML Biophys J; 2005 Oct; 89(4):2481-93. PubMed ID: 16055540 [TBL] [Abstract][Full Text] [Related]
19. Topological studies of the membrane-binding segment of cytochrome b5 embedded in phosphatidylcholine vesicles. Tajima S; Sato R J Biochem; 1980 Jan; 87(1):123-34. PubMed ID: 7358621 [TBL] [Abstract][Full Text] [Related]
20. Ion channel behavior of amphotericin B in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes investigated by electrochemistry and spectroscopy. Huang W; Zhang Z; Han X; Tang J; Wang J; Dong S; Wang E Biophys J; 2002 Dec; 83(6):3245-55. PubMed ID: 12496093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]