These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 3707960)

  • 1. Vesicles of variable sizes produced by a rapid extrusion procedure.
    Mayer LD; Hope MJ; Cullis PR
    Biochim Biophys Acta; 1986 Jun; 858(1):161-8. PubMed ID: 3707960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles.
    Mayer LD; Hope MJ; Cullis PR; Janoff AS
    Biochim Biophys Acta; 1985 Jul; 817(1):193-6. PubMed ID: 4005257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of unilamellar vesicles by repetitive freeze-thaw cycles: characterization by electron microscopy and 31P-nuclear magnetic resonance.
    Traïkia M; Warschawski DE; Recouvreur M; Cartaud J; Devaux PF
    Eur Biophys J; 2000; 29(3):184-95. PubMed ID: 10968210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size distribution, trapped volume and ability to maintain a membrane potential.
    Hope MJ; Bally MB; Webb G; Cullis PR
    Biochim Biophys Acta; 1985 Jan; 812(1):55-65. PubMed ID: 23008845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutrase entrapment in stable multilamellar and large unilamellar vesicles for the acceleration of cheese ripening.
    b1esta M; Wehrli E; Puglisi G
    J Microencapsul; 1995; 12(3):307-25. PubMed ID: 7650594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High encapsulation efficiencies in sized liposomes produced by extrusion of dehydration-rehydration vesicles.
    Aliño SF; Garcia-Sanz M; Irruarrizaga A; Alfaro J; Hernandez J
    J Microencapsul; 1990; 7(4):497-503. PubMed ID: 2266475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors affecting the size distribution of liposomes produced by freeze-thaw extrusion.
    Castile JD; Taylor KM
    Int J Pharm; 1999 Oct; 188(1):87-95. PubMed ID: 10528086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles.
    MacDonald RC; MacDonald RI; Menco BP; Takeshita K; Subbarao NK; Hu LR
    Biochim Biophys Acta; 1991 Jan; 1061(2):297-303. PubMed ID: 1998698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constant pressure-controlled extrusion method for the preparation of Nano-sized lipid vesicles.
    Morton LA; Saludes JP; Yin H
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22760481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes.
    Olson F; Hunt CA; Szoka FC; Vail WJ; Papahadjopoulos D
    Biochim Biophys Acta; 1979 Oct; 557(1):9-23. PubMed ID: 95096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase behavior of large unilamellar vesicles composed of synthetic phospholipids.
    Parente RA; Lentz BR
    Biochemistry; 1984 May; 23(11):2353-62. PubMed ID: 6477871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of particle size and encapsulation parameters of three liposomal preparations.
    Elorza B; Elorza MA; Sainz MC; Chantres JR
    J Microencapsul; 1993; 10(2):237-48. PubMed ID: 8331497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane interactions of ternary phospholipid/cholesterol bilayers and encapsulation efficiencies of a RIP II protein.
    Manojlovic V; Winkler K; Bunjes V; Neub A; Schubert R; Bugarski B; Leneweit G
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):284-96. PubMed ID: 18359207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and phase behavior of two types of unilamellar vesicles prepared from synthetic phosphatidylcholines studied by freeze-fracture electron microscopy and calorimetry.
    Parente RA; Höchli M; Lentz BR
    Biochim Biophys Acta; 1985 Jan; 812(2):493-502. PubMed ID: 3838143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid mixing during freeze-thawing of liposomal membranes as monitored by fluorescence energy transfer.
    MacDonald RI; MacDonald RC
    Biochim Biophys Acta; 1983 Nov; 735(2):243-51. PubMed ID: 6688739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective encapsulation of proteins into size-controlled phospholipid vesicles using freeze-thawing and extrusion.
    Sou K; Naito Y; Endo T; Takeoka S; Tsuchida E
    Biotechnol Prog; 2003; 19(5):1547-52. PubMed ID: 14524718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of saccharides with lipid bilayer vesicles: stabilization during freeze-thawing and freeze-drying.
    Strauss G; Schurtenberger P; Hauser H
    Biochim Biophys Acta; 1986 Jun; 858(1):169-80. PubMed ID: 3011090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trapping drug efficiency in liposomes produced by extrusion of freeze-thaw multilamellar vesicles.
    Aliño SF; García M; Lejarreta M; Bobadilla M; Pérez-Yarza G; Unda FJ
    Biochem Soc Trans; 1989 Dec; 17(6):1000-1. PubMed ID: 2628044
    [No Abstract]   [Full Text] [Related]  

  • 19. Phase behaviour of mixtures of lipid X with phosphatidylcholine and phosphatidylethanolamine.
    Lipka G; Hauser H
    Biochim Biophys Acta; 1989 Feb; 979(2):239-50. PubMed ID: 2923879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Filter-extruded liposomes revisited: a study into size distributions and morphologies in relation to lipid-composition and process parameters.
    Hinna A; Steiniger F; Hupfeld S; Stein P; Kuntsche J; Brandl M
    J Liposome Res; 2016; 26(1):11-20. PubMed ID: 25826203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.